精英家教网 > 高中数学 > 题目详情
一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点。
(1)      在AD上(含A、D端点)确定一点P,使得GP//平面FMC;
(2)      一只苍蝇在几何体ADF-BCE内自由飞翔,求它飞入几何体F-AMCD内的概率。
                                                                         
                                                                          
(Ⅰ)略(Ⅱ)
:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC
(1)点P在A点处 证明:取DC中点S,连接AS、GS、GA
∵G是DF的中点,GS//FC,AS//CM
∴面GSA//面FMC,而GA面GSA…………9分
(2)  所以概率为…………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如题一图,是圆内接四边形.的交点为是弧上一点,连接并延长交于点,点分别在的延长线上,满足,求证:四点共圆.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面为正方
形,侧面PAD与底面ABCD垂直,M为底面内的一个动点,且满  足MP=MC,则动点M的轨迹为            (   )
A.椭圆B.抛物线
C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知异面直线l1l2l1l2MNl1l2的公垂线,MN = 4,Al1Bl2AM = BN = 2,OMN中点.①求l1OB的成角.②求A点到OB距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图, 在矩形中, ,

分别为线段的中点, ⊥平面.
(1) 求证: ∥平面
(2) 求证:平面⊥平面
(3) 若, 求三棱锥
体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC—A1B1C1的侧棱长与底面三角形的各边长都等于a,D为BC的中点,(1)求证:A1B∥平面AC1D.
(2)若点M为CC1中点,求证:平面A1B1M⊥平面ADC1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为_______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直三棱柱中,
,则异面直线所成角的
大小是                    (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCDA1B1C1D1的8个顶点在同一球面上,且AB=2,AD=,AA1=1,则顶点AB间的球面距离是           (   )
A.2B.C.D.

查看答案和解析>>

同步练习册答案