精英家教网 > 高中数学 > 题目详情
如图,第n行共有n个数,且该行的第一个数和最后一个数都是n,中间任意一个数都等于第n-1行与之相邻的两个数的和,an,1,an,2…an,n(n=1,2,…)分别表示第n行的第一个数,第二个数,…第n个数,则an,2(n≥2且?∈N)的表达式(  )
A、an,2=
n2-n
2
B、an,2=
n2+n-2
2
C、an,2=
n2+n-4
2
D、an,2=
n2-n+2
2
考点:等差数列与等比数列的综合
专题:计算题,推理和证明
分析:根据每一行第二个数2,4,7.11.得到取值的规律性,进而归纳出数列的通项公式即可.
解答: 解:把第n行(n≥2)第2个数记为an
则由题意可知a2=2,a3=4,a4=7,a5=11,
∴a3-a2=2,
a4-a3=3,
a5-a4=4,

an-an-1=n-1,
所有等式两同时相加得an=
n2-n+2
2
,n≥2.即an,2=
n2-n+2
2
,n≥2
故选:D.
点评:本题主要考查归纳推理的应用,利用累加法是解决本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+2n(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}是等比数列,公比为q(q>0),且满足b2=S1,b4=a2+a3,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,0)作直线l与圆x2+y2=1交于A、B两点,则
PA
PB
等于定值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sin(2x+
π
3
)(x∈R)有下列命题:
①把函数f(x)的图象沿水平方向右平移
π
12
个单位,可得到函数y=cos2x的图象;
②函数f(x)的图象关于点(
π
6
,0)对称;
③把函数f(x)的图象上每个点的横坐标缩小到原来的
1
2
,得到函数y=sin(x+
π
6
)的图象;
④函数f(x)的图象关于直线x=-
12
对称.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A′B′C′(侧棱垂直底面,底面为正三角形)中,D是BC的中点,AA′=AB=2
(1)求三棱锥A′-ABD的体积;
(2)求证:AD⊥B′D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a≠0),g(x)=xlnx.
(1)若函数f(x)<0的解集为(1,3),且f(x)的最小值为-1,求函数f(x)的解析式;
(2)当a=1,c=2时,若函数φ(x)=f(x)+g(x)有零点,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+
b
x
(a,b∈R),下列命题:
①当a>0,b>0时,对函数f(x)图象上任意一点A,图象上存在唯一的点B,使得tan∠AOB=
1
a
(O是坐标原点);
②当ab≠0时,函数f(x)图象上任意一点的切线与直线y=ax及y轴围成的三角形面积是定值.
正确的是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)对于一切实数x、y,都有f(x+y)=f(x)+f(y).
(1)求f(0),并证明y=f(x)是奇函数;
(2)当x>0时,f(x)<0,求函数y=f(x)的单调性;
(3)若f(1)=3,在(2)的情况下,解不等式f(x)<-9.

查看答案和解析>>

科目:高中数学 来源: 题型:

某家电专卖店在国庆期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:
奖次一等奖二等奖三等奖
随机数组的特征3个1或3个0只有2个1或2个0只有1个1或1个0
奖金(单位:元)5m2mm
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,324,754,500,296,065,379,118,520,161,218,953,254,406,227,111,358,791.
(1)在以上模拟的20组数中,随机抽取3组数,求至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(i)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ii)若本次活动平均每台电视的奖金不超过85元,求m的最大值.

查看答案和解析>>

同步练习册答案