精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为,圆 轴交于点 为椭圆上的动点, 面积最大值为. 

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

【答案】(1) .(2) .

【解析】试题分析:(1)由离心率公式和的关系,结合椭圆的定义可得 即为椭圆的焦点,可得 ,再由 位于椭圆短轴端点时, 的面积取得最大值 ,解方程即可得到 的值,即有圆和椭圆的方程;
(2)讨论直线的斜率不存在时,求得切线的方程,代入椭圆方程可得交点和弦长;当直线的斜率存在时,设直线的方程为,运用直线和圆相切的条件,再由直线方程和椭圆方程联立,运用韦达定理和弦长公式,化为 的函数式,运用换元法和二次函数的最值求法,即可得到所求弦长的范围.

试题解析:(1)由题意得,解得,①

因为,所以,点为椭圆的焦点,所以

,则,所以,当时, ,代入①解得,所以

所以,圆的方程为,椭圆的方程为

(2)①当直线的斜率存在时,设直线的方程为

因为直线与圆相切,所以,即

联立消去可得

,则,所以

所以,所以

②当直线的斜率不存在时,直线的方程为,解得

综上, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

试销价

9

11

10

12

13

14

产品销量

40

32

29

35

44

(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量

(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.

参考公式:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种特别列车,沿途共有个车站(包括起点与终点),因安全需要,规定在同一车站上车的旅客不能在同一车站下车。为了保证上车的旅客都有座位(每位旅客一个座位),则列车至少要安排()个座位。

A. B. 100 C. 110 D. 120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,a1=2,且a1a2a3-2成等差数列.

1)求数列{an}的通项公式;

2)若数列{bn}满足:,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平

均数近似为样本方差

(i)利用该正态分布,求

(ii)央视媒体平台从年龄在的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:存在无穷多个棱长为正整数的长方体,其体积恰等于对角线长的平方,且该长方体的每一个表面总可以割并成两个整边正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的投放,方便了市民短途出行,被誉为中国新四大发明之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:

不小于40

小于40

合计

单车用户

12

y

m

非单车用户

x

32

70

合计

n

50

100

1)求出列联表中字母xymn的值;

2)①从此样本中,对单车用户按年龄采取分层抽样的方法抽出5人进行深入调研,其中不小于40岁的人应抽多少人?

②从独立性检验角度分析,能否有以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关.

下面临界值表供参考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)①若直线的图象相切, 求实数的值;

②令函数,求函数在区间上的最大值.

(2)已知不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,解不等式

(Ⅱ)求证:

查看答案和解析>>

同步练习册答案