分析 先求出函数的对称轴,通过讨论a的范围,得到函数的单调区间,求出函数的最大值的表达式,解出即可.
解答 解:函数f(x)=x2+2ax+1-a,
对称轴是x=-a,
当-a≤0即a≥0时:f(x)在[0,1]递增,
∴f(x)max=f(1)=a+2=2,解得:a=0;
当0<-a<$\frac{1}{2}$即-$\frac{1}{2}$<a<0时:f(x)在[0,a)递减,在(a,1],
∴f(x)max=f(1)=a+2=2,解得:a=0;
当$\frac{1}{2}$≤-a<1即-1<a≤-$\frac{1}{2}$时:f(x)在[0,a)递减,在(a,1],
∴f(x)max=f(0)=1-a=2,解得:a=-1;
当-a≥1即a≤-1时:f(x)在[0,1]递减,
∴f(x)max=f(0)=1-a=2,解得:a=-1.
点评 本题考查了二次函数的性质,考查分类讨论思想,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{9π}$ | B. | $\frac{9}{4π}$ | C. | $\frac{4π}{9}$ | D. | $\frac{9π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A={0,1} | B. | A={0,1,3} | C. | A={0,1,2,3} | D. | A={1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com