精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆与抛物线共焦点,抛物线上的点My轴的距离等于,且椭圆与抛物线的交点Q满足

(I)求抛物线的方程和椭圆的方程;

(II)过抛物线上的点作抛物线的切线交椭圆于 两点,求此切线在x轴上的截距的取值范围.

【答案】(I). (II)

【解析】试题分析:(I)根据抛物线上的点My轴的距离等于,可知点M到直线的距离等于点M到焦点的距离,由此求得.由抛物线的定义及可求得点坐标,根据椭圆的定义求出,并由此求出椭圆的标准方程.(II)联立直线的方程和抛物线的方程,利判别式等于零得到的一个等量关系.联立直线的方程和椭圆的方程,利用判别式大于零求得的取值范围.求出截距的表达式,利用得取值范围可求得截距的取值范围.

试题解析:

(I)∵抛物线上的点My轴的距离等于

∴点M到直线的距离等于点M到焦点的距离,

是抛物线的准线,即

解得,∴抛物线的方程为

可知椭圆的右焦点,左焦点

由抛物线的定义及,得

,解得

由椭圆的定义得

,又,得

∴椭圆的方程为

(II)显然

,消去x,得

由题意知,得

,消去y,得

其中

化简得,又,得,解得

切线在x轴上的截距为,又

∴切线在x轴上的截距的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=x2+(a+2)x﹣3,x∈[a,b]的图象关于直线x=1对称.
(1)求a、b的值和函数的零点
(2)当函数f(x)的定义域是[0,3]时,求函数f(x)的值域..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部最新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.524小时平均浓度不得超过75微克/立方米。某城市环保部分随机抽取的一居民区过去20PM2.524小时平均浓度的监测数据,数据统计如下:

组别

PM2.5平均浓度

频数

频率

第一组

(0,25]

3

0.15

第二组

(25,50]

12

0.6

第三组

(50,75]

3

0.15

第四组

(75,100]

2

0.1

(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;

(II)求样本平均数,并根据样本估计总计的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;

(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)已知是公差不为零的等差数列 成等比数列

1)求数列的通项

2)求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下图中,四边形 ABCD是等腰梯形, OQ分别为线段ABCD的中点,OQEF的交点为POP=1,PQ=2,现将梯形ABCD沿EF折起,使得,连结ADBC,得一几何体如图所示.

(Ⅰ)证明:平面ABCD平面ABFE

(Ⅱ)若上图中, ,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,底面是菱形, 平面,点的中点,且.

(1)证明:

(2)求三棱锥的体积;

(3)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

同步练习册答案