【题目】(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。
科目:高中数学 来源: 题型:
【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为( )
①圆的面积为;
②椭圆的长轴为;
③双曲线两渐近线的夹角为;
④抛物线中焦点到准线的距离为.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,且过点.
(1)求椭圆的方程;
(2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.
(Ⅰ)求该考场考生中语文成绩为一等奖的人数;
(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;
(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入21世纪,互联网和通讯技术高速发展使商务进入一个全新的阶段,网上购物这一方便、快捷的购物形式已经被越来越多的人所接受某互联网公司为进一步了解大学生的网上购物的情况,对大学生的消费金额进行了调查研究,得到如下统计表:
组数 | 消费金额元 | 人数 | 频率 |
第一组 | 1100 | ||
第二组 | 3900 | ||
第三组 | 3000 | p | |
第四组 | 1200 | ||
第五组 | 不低于200元 | m |
求m,p的值;
该公司从参与调查且购物满150元的学生中采用分层抽样的方法抽取作为中奖用户,再随机抽取中奖用户的获得一等奖求第五组至少1人获得一等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下说法错误的是( )
A.复数满足,则复数在复平面上对应的点的轨迹为直线.
B.为上连续可导的函数,若,则为极值点.
C.若,,,则.
D.为抛物线的两点,为坐标原点,若,则直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为的样本,测量树苗高度(单位:),经统计,其高度均在区间内,将其按,,,,,分成组,制成如图所示的频率分布直方图.其中高度为27cm及以上的树苗为优质树苗.
(1)求图中的值;
(2)已知所抽取这棵树苗来自于两个试验区,部分数据如下列联表:将列联表补充完整,并判断是否有的把握认为优质树苗与两个试验区有关系,并说明理由;
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在微信群中发了一个8元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com