精英家教网 > 高中数学 > 题目详情

双曲线4x2-4y2-8x+16y-11=0的渐近线方程是


  1. A.
    x-y+1=0,x+y-3=0
  2. B.
    x-y+1=0,x+y+3=0
  3. C.
    x-y-1=0,x+y+3=0
  4. D.
    x-y-1=0,x+y-3=0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
(1)若a=1,b=2,p=2,求点Q的坐标
(2)若点P(a,b)(ab≠0)在椭圆
x2
4
+y2=1上,p=
1
2ab

求证:点Q落在双曲线4x2-4y2=1上
(3)若动点P(a,b)满足ab≠0,p=
1
2ab
,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
(1)若a=1,b=2,p=2,求点Q的坐标
(2)若点P(a,b)(ab≠0)在椭圆
x2
4
+y2=1上,p=
1
2ab

求证:点Q落在双曲线4x2-4y2=1上
(3)若动点P(a,b)满足ab≠0,p=
1
2ab
,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2008年上海市高考数学试卷(理科)(解析版) 题型:解答题

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
(1)若a=1,b=2,p=2,求点Q的坐标
(2)若点P(a,b)(ab≠0)在椭圆+y2=1上,p=
求证:点Q落在双曲线4x2-4y2=1上
(3)若动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年五校联合教学调研数学试卷(理科)(解析版) 题型:解答题

已知椭圆C:的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1以抛物线的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案