精英家教网 > 高中数学 > 题目详情
7.已知函数y=f(x)的图象在点M(3,f(3))处的切线方程是y=$\frac{1}{3}$x+$\frac{2}{3}$,则f(3)+f′(3)的值为2.

分析 先将x=3代入切线方程可求出f(3),再由切点处的导数为切线斜率可求出f'(3)的值,最后相加即可.

解答 解:由已知切点在切线上,所以f(3)=$\frac{1}{3}$×3+$\frac{2}{3}$=$\frac{5}{3}$,切点处的导数为切线斜率,所以f'(3)=$\frac{1}{3}$,
所以f(3)+f′(3)=$\frac{5}{3}$$+\frac{1}{3}$=2
故答案为:2.

点评 本题主要考查导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.△ABC中,角A、B、C所对的边分别为a、b、c,sinA=sinB(sinc+cosc).
(1)求∠B;
(2)b=1,求S△ABC最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=a{x^2}+blnx,a,b∈R,f(1)=\frac{1}{2},f'(2)=1$.
(Ⅰ)求f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间$[{1,\sqrt{e}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2-2mx+5在区间[-2,+∞)上是增函数,则m的取值范围是(  )
A.(-∞,-2]B.[-2,+∞)C.(-∞,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知二次函数f(x)的最小值为-4,f(0)=f(2)=-3,且y=|f(x)|在区间[3a,a+1]上单调,则a的取值范围是$(-∞,-2]∪[-\frac{1}{3},0]∪[\frac{1}{3},\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是(  )
A.45,67B.50,68C.55,69D.60,70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的首项al=1,公差d>0,且{an}的第二项、第五项、第十四项成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{n({a_n}+5)}}(n∈{N^*})$,记Sn为数列{bn}的前n项和,求Sn并说明是否存在最大的整数t,使得对任意的n均有${S_n}>\frac{t}{36}$总成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=kx2+kx+2(k∈R).
(1)若k=-1,解不等式f(x)≤0;
(2)若不等式f(x)>0的解集为R,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的倾斜角为锐角,并且与坐标轴围成的三角形的面积为6,周长为12,求直线l的方程.

查看答案和解析>>

同步练习册答案