精英家教网 > 高中数学 > 题目详情
11.如图,正方形ABCD的边长为$\sqrt{2}$,且对角线AC的中点为O,E为AD的中点,将△ADC沿对角线AC折起得平面ADC⊥平面ABC.
(Ⅰ)求证:平面EOB⊥平面AOD;
(Ⅱ)求平面EOB与平面BCD所成二面角的余弦值.

分析 (Ⅰ)推导出DO⊥AC,DO⊥BO,BO⊥平面ADC,由此能证明平面EOB⊥平面AOD.
(Ⅱ)以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出平面EOB与平面BCD所成二面角的余弦值.

解答 证明:(Ⅰ)因为平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC
又AC的中点为O,所以DO⊥AC,
∴DO⊥平面ABC,又BO?平面ABC,∴DO⊥BO,
又BO⊥AC,DO∩AC=O,∴BO⊥平面ADC,
又BO?平面EOB,∴平面EOB⊥平面AOD.
解:(Ⅱ)以O为原点,OB为x轴,OC为y轴,OD为z轴,
建立空间直角坐标系,
A(0,-1,0),D(0,0,1),E(0,-$\frac{1}{2}$,$\frac{1}{2}$),B(1,0,0),
C(0,1,0),
$\overrightarrow{OE}$=(0,-$\frac{1}{2},\frac{1}{2}$),$\overrightarrow{OB}$=(1,0,0),$\overrightarrow{DB}$=(1,0,-1),$\overrightarrow{DC}$=(0,1,-1),
设平面EOB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{OE}=-\frac{1}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{OB}=x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
设平面BDC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=a-c=0}\\{\overrightarrow{m}•\overrightarrow{DC}=b-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,1),
设平面EOB与平面BCD所成二面角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{2}×\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,
∴平面EOB与平面BCD所成二面角的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax3+4x-4(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线3x-y+2=0平行.
(Ⅰ)求实数a的值;
(Ⅱ)若函数g(x)=f(x)-m有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(n>0,m>0)的两个焦点为F1,F2,P在双曲线上.且满足∠F1PF1=$\frac{π}{3}$,S${\;}_{△{F}_{1}P{F}_{2}}$=1,则m=$\root{4}{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

命题:“”的否定是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$,(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆M的方程为ρ2-6ρsinθ=-8.
(1)求圆M的直角坐标方程;
(2)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(1)求证:AB⊥PC;
(2)求侧面BPC与侧面DPC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是一个物体的三视图,根据图中尺寸(单位:cm),它的体积为32+8πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△ABC中,AB=AC,△ABC的外接圆是⊙O,D是劣弧$\widehat{AC}$上的一点,弦AD,BC的延长线相交于点E,连结BD并延长到点F,连结CD.
(1)求证:DE平分∠CDF;
(2)求证:AB2=AD•AE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两直线l1:(a-1)x+2y+1=0与l2:x+ay+1=0平行,则a=(  )
A.2B.-1C.0或-2D.-1或2

查看答案和解析>>

同步练习册答案