分析 (Ⅰ)推导出DO⊥AC,DO⊥BO,BO⊥平面ADC,由此能证明平面EOB⊥平面AOD.
(Ⅱ)以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出平面EOB与平面BCD所成二面角的余弦值.
解答 证明:(Ⅰ)因为平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC
又AC的中点为O,所以DO⊥AC,
∴DO⊥平面ABC,又BO?平面ABC,∴DO⊥BO,
又BO⊥AC,DO∩AC=O,∴BO⊥平面ADC,
又BO?平面EOB,∴平面EOB⊥平面AOD.
解:(Ⅱ)以O为原点,OB为x轴,OC为y轴,OD为z轴,
建立空间直角坐标系,
A(0,-1,0),D(0,0,1),E(0,-$\frac{1}{2}$,$\frac{1}{2}$),B(1,0,0),
C(0,1,0),
$\overrightarrow{OE}$=(0,-$\frac{1}{2},\frac{1}{2}$),$\overrightarrow{OB}$=(1,0,0),$\overrightarrow{DB}$=(1,0,-1),$\overrightarrow{DC}$=(0,1,-1),
设平面EOB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{OE}=-\frac{1}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{OB}=x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
设平面BDC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=a-c=0}\\{\overrightarrow{m}•\overrightarrow{DC}=b-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,1),
设平面EOB与平面BCD所成二面角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{2}×\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,
∴平面EOB与平面BCD所成二面角的余弦值为$\frac{\sqrt{6}}{3}$.
点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com