精英家教网 > 高中数学 > 题目详情
如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.
(1)见解析(2)

试题分析:
(1)要证明直线PA垂直BO,根据线面垂直的性质只需要证明BO垂直于PA所在的面PAD即可,首先O是点P在面ABCD上的投影,则有PO垂直于面ABCD,即有BO与PO垂直,三角形ABO的三条边已知,则利用三角形的勾股定理即可证明BO垂直于AD,即有BO垂直于面PAD内两条相交的直线,则BO垂直于面PAD,故有BO垂直于PA.
(2)根据(1)利用AD,PO,BO两两垂直,即可分别设为x,y,z轴建立三维直角坐标系,利用坐标法来求解二面角,即分别求出面ABP与面BPD的法向量,法向量的夹角即为二面角或其补角,根据观察不能发现该二面角是钝角,则利用向量内积的定义即可求出该二面角的余弦值.
试题解析:
(1)在中,
,∴.
⊥平面,∴.
平面平面,且
⊥平面.
平面,∴.   6分

(2)由题知,以为坐标原点,轴,
建立如图空间直角坐标系.
由已知,,∴.
因为等腰梯形
所以,∴
,    8分
所以
.
设平面的法向量为,则
,故,即.
设平面的法向量为

,∴,即.

设二面角的大小为,由图可知是钝角,
所以二面角的余弦值为.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.
(1)求证:CD⊥面ABB1A1
(2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,

(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系O-xyz中,平面OAB的一个法向量为n=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.

(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的距离除以到的距离的值为的点的坐标满足(    )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案