精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线C:x2-y2=1及直线l:y=kx+1.

(1)lC有两个不同的交点,求实数k的取值范围;

(2)lC交于A,B两点,且线段AB中点的横坐标为,求线段AB的长.

【答案】(1);(2)6

【解析】

(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围.
(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可.

(1)若双曲线C与直线l有两个不同的交点,则方程组有两个不同的实数根,整理得(1-k2)x2-2kx-2=0,∴解得-<k<且k≠±1.故双曲线C与直线l有两个不同的交点时,k的取值范围是(-,-1)∪(-1,1)∪(1,).

(2)设A(x1,y1),B(x2,y2),由(1)得x1+x2==2,即k2+k-=0,解得k=或k=-.

∵-<k<且k≠±1,

∴k=,∴x1x2==-4,∴|AB|=·=6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.命题.则ab中至少有一个不小于1”的逆命题是一个真命题

B.命题负数的平方是正数是特称命题

C.命题a,若,则是一个真命题

D.常数数列既是等差数列也是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为

(1)求椭圆C及圆O的方程;

(2)设直线l与圆O相切于第一象限内的点P

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

②直线l与椭圆C交于两点.若的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5分)《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )

A. 1B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为征求个人所得税法修改建议,某机构对当地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500))

(1)求居民月收入在的频率;

(2)根据频率分布直方图估算样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,讨论函数的单调性;

求函数在区间上零点的个数.

查看答案和解析>>

同步练习册答案