精英家教网 > 高中数学 > 题目详情

【题目】某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:

每分钟跳绳个数

得分

16

17

18

19

20

年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.

(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)

(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:

(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);

(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.

附:若随机变量服从正态分布,则.

【答案】(1);(2)(i)1683;(ii).

【解析】

1)根据频率分布直方图得到16分,17分,18分的人数,再根据古典概率的计算公式求解.

2)根据离散型随机变量的分布列和数学期望与方差的公式进行求解.

(1)设“两人得分之和小于35分”为事件,则事件包括以下四种情况:

①两人得分均为16分;②两人中一人16分,一人17分;

③两人中一人16分,一人18分;④两人均17分.

由频率分布直方图可得,得16分的有6人,得17分的有12人,得18分的有18人,

则由古典概型的概率计算公式可得.

所以两人得分之和小于35的概率为.

(2)由频率分布直方图可得样本数据的平均数的估计值为:

(个).

又由,得标准差

所以高二年级全体学生的跳绳个数近似服从正态分布.

(i)因为,所以

故高二年级一分钟跳绳个数超过164个的人数估计为

(人).

(ii)由正态分布可得,全年级任取一人,其每分钟跳绳个数在179以上的概率为

所以的所有可能的取值为0,1,2,3.

所以

的分布列为:

0

1

2

3

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.

1)根据散点图判断:哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?

2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;

3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?

附注:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为(说明:的导函数为)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20161月至201812月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,判断下列结论:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在78月;

4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若是两个相交平面,则在下列命题中,真命题的序号为( )

若直线,则在平面内一定不存在与直线平行的直线.

若直线,则在平面内一定存在无数条直线与直线垂直.

若直线,则在平面内不一定存在与直线垂直的直线.

若直线,则在平面内一定存在与直线垂直的直线.

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):

若分数不低于95分,则称该员工的成绩为优秀”.

1)从这20人中任取3人,求恰有1人成绩优秀的概率;

2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.

组别

分组

频数

频率

1

2

3

4

①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);

②若从所有员工中任选3人,记表示抽到的员工成绩为优秀的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,点分别是的中点,点的重心.

1)证明:平面

2)若平面平面,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,离心率为分别是椭圆的右顶点和下顶点.

1)求椭圆的标准方程;

2)已知是椭圆内一点,直线的斜率之积为,直线分别交椭圆于两点,记的面积分别为.

①若两点关于轴对称,求直线的斜率;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案