【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占 ,统计成绩后,得到如下的2×2列联表:
分数大于等于120分 | 分数不足120分 | 合 计 | |
周做题时间不少于15小时 | 4 | 19 | |
周做题时间不足15小时 | |||
合 计 | 45 |
(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)(i) 按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
(ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
【答案】解:(Ⅰ)列联表:
分数大于等于120分 | 分数不足120分 | 合计 | |
周做题时间不少于15小时 | 15 | 4 | 19 |
周做题时间不足15小时 | 10 | 16 | 26 |
合计 | 25 | 20 | 45 |
∵ ,
∴能在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.
(Ⅱ)( i)9× =4,故需要从不足120分的学生中抽取4人.
X的可能取值为0,1,2,3,4,
P(X=0)= ,P(X=1)= ,P(X=2)= ,P(X=3)= ,P(X=4)= .
( ii)从全校大于等于120分的学生中随机抽取1人,此人周做题时间不少于15小时的概率为 =0.6,
设从全校大于等于120分的学生中随机抽取20人,这些人中周做题时间不少于15小时的人数为随机变量Y,则Y~B(20,0.6),
故E(Y)=12,D(Y)=4.8.
【解析】(I)根据比例计算每周自主做数学题的时间不足15小时,且数学平均成绩不足120分的人数,再根据合计数填表;(II)(i)计算抽取的人数中分数不足120分的人数,根据超几何分布的概率公式计算;(ii)根据二项分布的性质计算.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈ .人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是( )
A.d≈
B.d≈
C.d≈
D.d≈
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若曲线f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是( )
A.(e,e2)
B.(e, )
C.(1,e2)
D.[1,e)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点. (Ⅰ)证明:PB∥平面ACM;
(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M﹣AC﹣B的大小为β,求sinαcosβ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,集合M={0,1,2,3,4,5,6,7,8},现从M中任取两个不同元素m,n,则f(m)f(n)=0的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奇函数f(x)定义域为(﹣π,0)∪(0,π),其导函数是f′(x).当0<x<π时,有f′(x)sinx﹣f(x)cosx<0,则关于x的不等式f(x)< f( )sinx的解集为( )
A.( ,π)
B.(﹣π,﹣ )∪( ,π)
C.(﹣ ,0)∪(0, )
D.(﹣ ,0)∪( ,π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com