精英家教网 > 高中数学 > 题目详情

【题目】已知直线的斜率为,纵截距为.

1)求点(24)关于直线的对称点坐标;

2)求与直线平行且距离为的直线方程.

【答案】1 2

【解析】

1)设点,则关于直线的对称点坐标为,利用点关于直线对称的性质,以及中垂线定理,列出关于的式子,结合的中点在直线上,即可求出

2)根据平行直线系方程,由已知直线写出与它平行的直线的方程为:,再利用两平行线间的距离公式,求出,即可得出直线方程.

已知直线的斜率为,纵截距为,则方程为:

1)设点为点,则关于直线的对称点坐标为

则直线与直线垂直,则,即①,

的中点在直线上,所以②,

联立①和②,解得

所以点关于直线的对称点坐标为.

2)设所求的直线为,因为直线与直线平行且距离为

又因为直线方程为:,即

所以可设直线的方程为:

,解得-11.

所以直线的方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球谁赢. 如果甲先抓,那么下列推断正确的是(

A. =4,则甲有必赢的策略 B. =6,则乙有必赢的策略

C. =9,则甲有必赢的策略 D. =11,则乙有必赢的策略

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品中分正品与次品,正品重,次品重,现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品)如果将5袋产品以15编号,第袋取出个产品(),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量,若次品所在的袋子的编号是2,此时的重量_________;若次品所在的袋子的编号是,此时的重量_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中

1)根据表中数据,求声音强度关于声音能量的回归方程

2)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.已知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪声污染的干扰,并说明理由.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知六个直角边均为1的直角三角形围成的两个正六边形,则该图形绕着旋转一周得到的几何体的体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面ABCD为菱形,,侧面PAD与底面ABCD所成的角为是等边三角形,点P到平面ABCD距离为

1)证明:

2)求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若函数存在极值点,求的取值范围;

2)设,若不等式上恒成立,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)求函数的单调区间;

2)设,若有两个相异零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

同步练习册答案