精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为

1)若直线与曲线至多只有一个公共点,求实数的取值范围;

2)若直线与曲线相交于两点,且的中点为,求点的轨迹方程.

【答案】1;(2

【解析】

1)利用参数方程、极坐标方程与直角坐标方程的互化公式把曲线和直线的方程化为直角坐标方程,并联立直线和曲线的直角坐标方程,得到关于的一元二次方程,利用判别式即可求出实数的取值范围;

根据题意,设的中点,直线和曲线的直角坐标方程联立,得到关于的一元二次方程,由两个交点可得判别式,求出取值范围,利用韦达定理和点在直线上表示出点坐标,消去参数即可求出的中点的轨迹方程.

1)因为曲线的参数方程为为参数),

消去参数可得,曲线的直角坐标方程为

由题意知,直线的极坐标方程可化为

因为,所以直线的直角坐标方程为

联立方程,可得

因为直线与曲线至多只有一个公共点,

所以判别式,解得

所以所求实数的取值范围为.

2)设的中点

联立方程,可得

所以判别式,解得

由韦达定理可得,

因为点在直线上,所以

所以可得即为点的轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,不等式恒成立,求m的取值范围;

2)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱柱中,底面为平行四边形, ,且在底面上的投影恰为的中点.

1)过作与垂直的平面,交棱于点,试确定点的位置,并说明理由;

2)若点满足,试求的值,使二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为

1)求的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点,一条直线与椭圆C交于两点,以为直径的圆经过坐标原点

(1)求椭圆C的标准方程;

(2)求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)当时,求函数的单调区间;

2)求函数的极值;

3)若函数在区间上有唯一零点,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是(

A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐

B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐

C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐

D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐

查看答案和解析>>

同步练习册答案