精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.

(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;

(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(温馨提示:答题前请仔细阅读卷首所给的公式)

(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.

 

【答案】

 (1)2,7,12,17,22,27,32,37,42,47.

(2)因为10名职工的平均体重为

 (81+70+73+76+78+79+62+65+67+59)=71

所以样本方差为:

s2 (102+12+22+52+72+82+92+62+42+122)=52.

(3) P(A)=.

【解析】茎叶图的茎是高位,叶是低位,所以本题中“茎是百位和十位”,叶是个位,从图中分析出参与运算的数据,代入相应公式即可解答.从茎叶图中提取数据是利用茎叶图解决问题的关键.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=N(A)/N求解.

(1)我们根据组内抽按编取的编号依次增加5进行系统抽样,第5组抽出的号码为22,我们可以根据第5组抽出的号码应为4k+l(k为间隔,即5,l为起始编号),计算出起始编号l的值,然后根据系统抽样的抽取方法不难写出所有被抽出职工的号码;

(2)该茎叶图的茎为十位数,叶为个位数,由此不难列出10们职工的体重,然后代入方差公式,即可计算方差;

(3)由(2)的数据,我们列出抽取两名职工体重的所有基本事件个数,及抽取的两名职工体重都不轻于73公斤的基本事件数,然后代入古典概型公式,即可求解

解:(1)由题意,第5组抽出的号码为22.

因为2+5×(5-1)=22,

所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为

2,7,12,17,22,27,32,37,42,47.……4分

(2)因为10名职工的平均体重为

 (81+70+73+76+78+79+62+65+67+59)=71

所以样本方差为:

s2 (102+12+22+52+72+82+92+62+42+122)=52.……8分

(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).

故所求概率为P(A)=.……12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案