精英家教网 > 高中数学 > 题目详情
19.已知tanθ=2,则sinθcosθ=(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.±$\frac{2}{5}$D.±$\frac{3}{5}$

分析 由条件利用同角三角函数的基本关系,求得sinθcosθ的值.

解答 解:∵tanθ=2,则sinθcosθ=$\frac{sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{tanθ}{{tan}^{2}θ+1}$=$\frac{2}{5}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{3}$(sin2x-cos2x)+2sinxcosx的最小正周期为π,单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是数列{an}的前n项和,则S2015=5239.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC的顶点坐标分别是A(5,1),B(1,1),C(1,3),则△ABC的外接圆方程为(  )
A.(x+3)2+(y+2)2=5B.(x+3)2+(y+2)2=20C.(x-3)2+(y-2)2=20D.(x-3)2+(y-2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在同一坐标系中,当a>1时,函数 y=($\frac{1}{a}$)x 与 y=logax的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,内角A、B、C的对边分别为a、b、c,且b,ccosA,acosC成等差数列.
(1)求$\frac{{c}^{2}-{a}^{2}}{{b}^{2}}$的值;
(2)若c=$\sqrt{5}$,tanA=$\frac{1}{2}$,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知关于x的方程x2-2ax+2a2-3a+2=0有两个不等的实数根x1,x2,那么(x1-x22的取值范围是(  )
A.(0,+∞)B.[0,1]C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ x-y≤0\end{array}\right.$,则z=2x-y的最大值为(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.

查看答案和解析>>

同步练习册答案