已知函数.
(I)判断函数的奇偶性并证明;
(II)若,证明:函数在区间上是增函数.
科目:高中数学 来源: 题型:解答题
已知函数(),.
(Ⅰ)若,曲线在点处的切线与轴垂直,求的值;
(Ⅱ)在(Ⅰ)的条件下,求证:;
(Ⅲ)若,试探究函数与的图象在其公共点处是否存在公切线,若存在,研究值的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知函数,,其中R.
(1)当a=1时,判断的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,,总有
成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知是定义在上的奇函数,当时
(1)求的解析式;
(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l4分)
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有
|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com