精英家教网 > 高中数学 > 题目详情

已知函数.
(I)判断函数的奇偶性并证明;
(II)若,证明:函数在区间上是增函数.

(I)函数为奇函数                ……1分
证明:函数的定义域为且关于原点对称 ……2分
又因为.
所以函数为奇函数;                         ………6分
II)证明: 
是区间上的任意两个实数且,    ……8分            ,                    ………………10分


函数上为增函数.               …………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数),
(Ⅰ)若,曲线在点处的切线与轴垂直,求的值;
(Ⅱ)在(Ⅰ)的条件下,求证:
(Ⅲ)若,试探究函数的图象在其公共点处是否存在公切线,若存在,研究值的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数,,其中R.
(1)当a=1时,判断的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有
成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数).
(I)当时,求在点处的切线方程;
(Ⅱ)求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
已知函数.当时,函数取得极值.
(I)求实数的值;
(II)若时,方程有两个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知是定义在上的奇函数,当
(1)求的解析式;
(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l4分)
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
  (2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有
|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设e为自然对数的底)。
(1)求pq的关系;
(2)若在其定义域为单调函数,求p的取值范围。
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)若函数
(1)当时,求函数的单调增区间;
(2)函数是否存在极值.

查看答案和解析>>

同步练习册答案