精英家教网 > 高中数学 > 题目详情
已知平面直角坐标系中,角α的始边与x正半轴重合,终边与单位圆(圆心是原点,半径为1的圆)交于点P.若角α在第
一象限,且tanα=
4
3
.将角α终边逆时针旋转
π
3
大小的角后与单位圆交于点Q,则点Q的坐标为(  )
A.(
3
3
-4
10
4
3
+3
10
)
B.(
3
3
+4
10
4
3
-3
10
)
C.(
3-4
3
10
4+3
3
10
)
D.(
3+4
3
10
4-3
3
10
)
因为角α在第一象限,且tanα=
4
3

所以sinα=
4
5
,cosα=
3
5

所以sin(α+
π
3
)=sinαcos
π
3
+cosαsin
π
3
=
4+3
3
10

cos(α+
π
3
)=cosαcos
π
3
-sinαsin
π
3
=
3-4
3
10

所以点Q的坐标为(
3-4
3
10
4+3
3
10
)

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面直角坐标系中三点坐标分别为A(3,0),B(0,4),C(cosθ,sinθ),θ∈R,则△ABC面积的最大值为(  )
A、
7
2
B、
9
2
C、
17
2
D、
21
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐标及|
1
2
BC
|

(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF

(3)求向量
DB
DC
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-2,-5),B(4,-13).
(1)求
AB
的坐标及|
AB
|

(2)若
OC
=
OA
+
OB
OD
=
OA
-
OB
,求
OC
OD
的坐标;
(3)求
OA
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和对称中心;
(Ⅱ)求f(x)在区间[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,角α的始边与x正半轴重合,终边与单位圆(圆心是原点,半径为1的圆)交于点P.若角α在第
一象限,且tanα=
4
3
.将角α终边逆时针旋转
π
3
大小的角后与单位圆交于点Q,则点Q的坐标为(  )

查看答案和解析>>

同步练习册答案