分析 (1)OA⊥OB时,设直线AB:x=my+n,代入抛物线方程,可得y2-2pmy-2pn=0,利用OA⊥OB,即可证明A、B两点的横坐标之积为定值;
(2)由(1)知,直线AB:x=my+2p过定点(2p,0).
解答 证明:(1)OA⊥OB时,设直线AB:x=my+n.
代入抛物线方程,可得y2-2pmy-2pn=0,
∵OA⊥OB,
∴x1x2+y1y2=$\frac{({y}_{1}{y}_{2})^{2}}{4{p}^{2}}$+y1y2=0,
∴y1y2=-4p2=-2pn,
∴n=2p,
∴x1x2=4p2;
(2)由(1)知,直线AB:x=my+2p过定点(2p,0).
点评 本题考查抛物线方程,考查学生的计算能力,考查直线与抛物线的位置关系,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com