精英家教网 > 高中数学 > 题目详情

【题目】如图,平面四边形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.

(1)求BD的长;
(2)求∠ADC的度数.

【答案】
(1)

解:方法一:在△BCD中,由正弦定理得:

,即

解得BD=3

方法二:由已知得∠BDC=30°,故

由余弦定理得:

BD2=CD2+BC2﹣2CDBCcos∠BCD

=

∴BD=3


(2)

解:在△ABD中,由余弦定理得:

∴∠ADB=45° …(8分)

由已知∠BDC=30°…(9分)

∴∠ADC=∠ADB+∠BDC=45°+30°=75°


【解析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.

(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域;
(3)若方程f(x)﹣m=0有四个解,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2

(1)求证:AB⊥BC;
(2)若AC=2 ,求锐二面角A﹣A1C﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,左、右焦点分别为F1 , F2 , 点G在椭圆C上,且 =0,△GF1F2的面积为2.

(1)求椭圆C的方程;
(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1 , k2 , 当 最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将 的图象向左平移 个单位,则所得图象的函数解析式为( )
A.y=sin2x
B.y=cos2x
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且对任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,则称数列A为“U﹣数列”.
(Ⅰ)若数列1,x,y,7为“U﹣数列”,写出所有可能的x,y;
(Ⅱ)若“U﹣数列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1 , a2 , …,an0 , 记M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面使用类比推理正确的是(
A.直线a∥b,b∥c,则a∥c,类推出:向量 , ,则
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2 . 类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,函数 的定义域为集合A,函数y=log2(x+2)的定义域为集合B,则集合(CUA)∩B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求证f(x)是R上的单调增函数;
(2)求函数f(x)的值域;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹