精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为

1)写出曲线C1C2的直角坐标方程;

2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.

【答案】1C1的直角坐标方程为C2的直角坐标方程为;(2

【解析】

1)由为参数),消去参数,可得曲线C1的直角坐标方程.由,得ρ2+3ρ2sin2θ4,结合极坐标与直角坐标的互化公式可得曲线C2的直角坐标方程;

2)由P为曲线C2上的动点,设P2cosαsinα),则P与圆的圆心的距离,利用二次函数求最值,再由勾股定理求|PA|的最大值.

解:(1)由为参数),消去参数,可得

∴曲线C1的直角坐标方程为

,得ρ2+3ρ2sin2θ4

x2+y2+3y24,即

∴曲线C2的直角坐标方程为

2)∵P为曲线C2上的动点,又曲线C2的参数方程为

∴设P2cosαsinα),

P与圆C1的圆心的距离

要使|PA|的最大值,则d最大,当sinα时,d有最大值为

|PA|的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面是正方形,底面ABCDE是侧棱的中点.

1)求异面直线AEPD所成的角;

2)求点B到平面ECD的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数的分布列及数学期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形是边长为5的菱形,对角线(如图1),现以为折痕将菱形折起,使点达到点的位置.的中点分为,且四面体的外接球球心落在四面体内部(如图2),则线段长度的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y24x焦点F的直线交该抛物线于A,B两点,且|AB|4,若原点O是△ABC的垂心,则点C的坐标为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线α为参数)经过伸缩变换得到曲线,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为.

1)求曲线的普通方程;

2)设点P是曲线上的动点,求点P到直线l距离d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级有60名学生,学号分别为160,其中男生35人,女生25人.为了了解学生的体质情况,甲、乙两人对全班最近一次体育测试的成绩分别进行了随机抽样.其中一人用的是系统抽样,另一人用的是分层抽样,他们得到各12人的样本数据如下所示,并规定体育成绩大于或等于80人为优秀.

甲抽取的样本数据:

学号

4

9

14

19

24

29

34

39

44

49

54

59

性别

体育成绩

90

80

75

80

83

85

75

80

70

80

83

70

女抽取的样本数据:

学号

1

8

10

20

23

28

33

35

43

48

52

57

性别

体育成绩

95

85

85

80

70

80

80

65

70

60

70

80

(Ⅰ)在乙抽取的样本中任取4人,记这4人中体育成绩优秀的学生人数为,求的分布列和数学期望;

(Ⅱ)请你根据乙抽取的样本数据,判断是否有95%的把握认为体育成绩是否为优秀和性别有关;

(Ⅲ)判断甲、乙各用的何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优,说明理由.

附:

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:

若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).

(1)求的值;

(2)求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案