精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三角形ABC的边长为3,过其中心G作BC边的平行线,分别交AB、AC于B1、C1.将△AB1C1沿B1C1折起到△A1B1C1的位置,使点A1在平面BB1C1C上的射影恰是线段BC的中点M.求:
(1)二面角A1-B1C1-M的大小;
(2)异面直线A1B1与CC1所成角的大小.(用反三角函数表示)
分析:(1)连接AM、A1G,根据二面角平面角的定义可知∠A1GM是二面角A1-B1C1-M的平面角,在Rt△A1GM中求出此角即可;
(2)B1作C1C的平行线交BC于点P,则∠A1B1P等于异面直线A1B1与CC1所成的角,在△A1B1P中利用余弦定理可求得∠A1B1P的大小.
解答:解:(1)连接AM、A1G.精英家教网
∵G是正三角形ABC的中心,且M为BC的中点,
∴A、G、M三点共线,AM⊥BC.
∵B1C1∥BC,∴B1C1⊥AM于点G,
即GM⊥B1C1,GA1⊥B1C1
∴∠A1GM是二面角A1-B1C1-M的平面角.
∵点A1在平面BB1C1C上的射影为M,
∴A1M⊥MG,∠A1MG=90°.
在Rt△A1GM中,由A1G=AG=2GM,得∠A1GM=60°,
即二面角A1-B1C1-M的大小是60°.
(2)过B1作C1C的平行线交BC于点P,
则∠A1B1P等于异面直线A1B1与CC1所成的角.
由PB1C1C是平行四边形得B1P=C1C=1=BP,
PM=BM-BP=
1
2
,A1B1=AB1=2.
∵A1M⊥面BB1C1C于点M,
∴A1M⊥BC,∠A1MP=90°.
在Rt△A1GM中,A1M=A1G•sin60°=
3
3
2
=
3
2

在Rt△A1MP中,A1P2=A1M2+PM2=(
3
2
2+(
1
2
2=
5
2

在△A1B1P中,由余弦定理得
cos∠A1B1P=
A1B12+B1P2-A1P2
2•A1B1B1P
=
22+12-
5
2
2•2•1
=
5
8

∴异面直线A1B1与CC1所成角的大小为arccos
5
8
点评:本小题主要考查异面直线所成的角,以及二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图①,正三角形ABC边长2,CD为AB边上的高,E、F分别为AC、BC中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图②
(1)判断翻折后直线AB与面DEF的位置关系,并说明理由
(2)求二面角B-AC-D的余弦值
(3)求点C到面DEF的距离
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三角形ABC按中线AD折叠,使得二面角B-AD-C的大小为60°,则∠BAC的余弦值为
7
8
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为_____________.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修二空间点、直线、平面之间的位置关系练习卷(二) 题型:解答题

如图,正三角形ABC的边长为2,D、E、F分别为各边的中点将△ABC沿DE、EF、DF折叠,使A、B、C三点重合,构成三棱锥A— DEF  .

(I)求平面ADE与底面DEF所成二面角的余弦值

(Ⅱ)设点M、N分别在AD、EF上, (λ>O,λ为变量)

①当λ为何值时,MN为异面直线AD与EF的公垂线段? 请证明你的结论②设异面直线MN与AE所成的角为a,异面直线MN与DF所成的角为β,试求a+β 的值

 

查看答案和解析>>

同步练习册答案