精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点.给出以下判断:

①直线与直线的斜率乘积为

轴;

③以为直径的圆与抛物线准线相切.

其中,所有正确判断的序号是(

A.①②③B.①②C.①③D.②③

【答案】B

【解析】

由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设到准线的距离分别为的半径为,点到准线的距离为,显然三点不共线,进而判断第三个结论.

解:由题意,可设直线的方程为

代入抛物线的方程,有

设点的坐标分别为

则直线与直线的斜率乘积为.所以①正确.

代入抛物线的方程可得,,从而,

根据抛物线的对称性可知,两点关于轴对称,

所以直线轴.所以②正确.

如图,设为抛物线的焦点,以线段为直径的圆为

则圆心为线段的中点.设到准线的距离分别为的半径为,点到准线的距离为,显然三点不共线,

.所以③不正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.

1)求在1次摸奖中,获得二等奖的概率;

2)若3人各参与摸奖1次,求获奖人数X的数学期望

3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】S是公差不为0的等差数列的前项和,且成等比数列。

(1)求等比数列的公比;

(2),求的通项公式;

(3)是数列的前项和,求使得对所有都成立的最小正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实验中学从高二级部中选拔一个班级代表学校参加学习强国知识大赛,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1个相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级6名选手,现从每个班级6名选手中随机抽取3人回答这个问题已知这6人中,甲班级有4人可以正确回答这道题目,而乙班级6人中能正确回答这道题目的概率每人均为,甲、乙两班级每个人对问题的回答都是相互独立,互不影响的.

1)求甲、乙两个班级抽取的6人都能正确回答的概率;

2)分别求甲、乙两个班级能正确回答题目人数的期望和方差,并由此分析由哪个班级代表学校参加大赛更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:

40岁及以下

40岁以上

合计

基本满意

15

30

45

很满意

25

10

35

合计

40

40

80

(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?

(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导数,函数处取得最小值.

1)求证:

2)若时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论的单调性;

2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.

1)求曲线的方程;

2)已知点,过原点且斜率为的直线与曲线交于两点(点在第一象限),求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家文明城市评审委员会对甲、乙两个城市是否能入围国家文明城市进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:

1)请你用统计学的知识分析哪个城市更应该入围国家文明城市,并说明理由;

2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.

(参考数据:

查看答案和解析>>

同步练习册答案