精英家教网 > 高中数学 > 题目详情

(08年华师一附中二次压轴理)甲、乙两人玩猜子游戏,每次甲出1子,2子或3子,由乙猜.若乙猜中,则甲所出之子归乙;若乙未猜中,则乙付给甲1子.已知甲出1子、2子或3子的概率分别为.

(Ⅰ)若乙每次猜1子,2子,3子的概率均为,求乙每次赢得子数的期望;

(Ⅱ)不论乙每次猜1子,2子,3子的概率如何,在一次游戏中甲、乙两人谁获胜的概率更大?试计算并证明之.

解析:(Ⅰ)设乙每次赢得的子数为ξ,则ξ的所有可能值为-1,1,2,3.

记事件Ai=甲出i子,事件Bi=乙猜甲出i子,i=1,2,3,则Ai,Bj为相互独立事件

∴P(ξ=i)=P(AiBi)=P(Ai)P(Bi)(i=1,2,3)

∴P(ξ=1) =P(A1)P(B1)=×=

P(ξ=2) =P(A2)P(B2)=×=

P(ξ=3) =P(A3)P(B3)=×=

∴P(ξ=-1)=1-P(ξ=1)-P(ξ=2)-P(ξ=3)=

∴ξ的分布列为

ξ

-1

1

2

3

P

Eξ=-1×+1×+2×+3×=-

(Ⅱ)∵乙获胜的概率P=P(ξ=1)+P(ξ=2)+P(ξ=3)

=P(A1)?P(B1)+P(A2)?P(B2)+P(A3)?P(B3)

∴甲胜利的概率更大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年华师一附中二次压轴文)已知函数f(x)=ax3cxx∈[-1,1]。

(1)若a=4,c=3,求证:对任意x∈[-1,1],恒有|f(x)|≤1;

(2)若对任意x∈[-1,1],恒有|f(x)|≤1,求证:|a|≤4。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年华师一附中二次压轴文)某工厂计划生产甲、乙两种畅销产品,甲、乙的加工过程必须经过AB两个生产环节,甲产品在AB两个环节所需时间分别为1小时和2小时,乙产品在AB两个环节所需时间分别为2小时和1小时,而AB两个生产环节在一个月内生产总时数不超过400小时和500小时,如果甲、乙两种产品销售单价分别为3千元/件,2千元/件。问在一个月内,甲、乙两种产品各生产多少件能使该厂销售收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年华师一附中二次压轴)过双曲线的右焦点F2的直线与右支交于AB两点,且线段AF2BF2的长度分别为mnmn.

(Ⅰ)求证:mn≥1;

(Ⅱ)当直线AB的斜率k∈[,3]时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年华师一附中二次压轴)如图,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=APB边上一点,且PA=1,将ΔPAD沿AD折起,使平面PAD⊥平面ABCD.

(Ⅰ)求证:平面PAD⊥面PCD

(Ⅱ)试在PB上找一点M,使截面AMC把几何体分成的两部分的体积之比为

VPDCMAVMACB=2:1;

(Ⅲ)在(Ⅱ)的条件下,判断AM是否平行于平面PCD.

 

查看答案和解析>>

同步练习册答案