精英家教网 > 高中数学 > 题目详情

【题目】设函数fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集为{x|x≤1},求实数a的值;

2)证明:fx

【答案】1a5;(2)见解析

【解析】

1)由题意可得|xa|≥4x,分类讨论去掉绝对值,分别求得x的范围即可求出a的值.(2)由条件利用绝对值三角不等式,基本不等式证得fx≥2..

1)由fx)﹣|x|≥4x,可得|xa|≥4x,(a0),

xa时,xa≥4x,解得x

这与xa0矛盾,故不成立,

xa时,ax≥4x,解得x

又不等式的解集是{x|x≤1},故1,解得a5

2)证明:fx)=|xa|+|x| |xa﹣(x||a|,∵a0

| a|a22,当且仅当a时取等号,

fx

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,恒成立,求实数的取值范围;

(2)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)当时,证明:

(Ⅱ)当时,讨论函数的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数

I)若曲线在点(0)处的切线为x轴,求a的值;

II)求函数[0l]上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形理论是当今世界十分风靡和活跃的新理论、新学科。其中,把部分与整体以某种方式相似的形体称为分形。分形是一种具有自相似特性的现象,图象或者物理过程。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构。也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形则当时,该黑色三角形内共去掉( )个小三角形

A. 81 B. 121 C. 364 D. 1093

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的周期为3的奇函数,且当时,,则方程在区间上的解得个数是( )

A. B. 6 C. 7 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

同步练习册答案