精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A、B、C所对的边分别是a、b、c,已知S△ABC=
3
2
3
,且b=2,c=3,O为△ABC的外心,则
OB
OC
=
-
7
6
-
7
6
分析:利用三角形的面积公式表示出三角形ABC的面积,使其等于已知的面积,把b和c的值代入求出sinA的值,由三角形ABC为锐角三角形,利用特殊角的三角函数值求出∠BAC的度数,进而求出cos∠BAC的值,由O为三角形的外心,根据同弧所对的圆心角等于圆周角的2倍,由∠BAC的度数求出∠BOC的度数,由b,c及cos∠BAC的值,利用余弦定理求出a的值,设三角形的外接圆半径为r,由a,sinA,利用正弦定理求出r的值,即为|OB|与|OC|的长,最后利用平面向量的数量积运算法则化简所求的式子,把各种的值代入即可求出值.
解答:解:∵S△ABC=
1
2
bcsinA
=
3
3
2
,b=2,c=3,
∴sin∠BAC=
3
2
,又△ABC为锐角三角形,
∴∠BAC=60°,cos∠BAC=
1
2

∵O为△ABC的外心,
∴∠BOC=2∠BAC=120°,
∵b=2,c=3,cos∠BAC=
1
2

∴根据余弦定理得:a2=b2+c2-2bc•cos∠BAC=4+9-6=7,
解得:a=
7

由正弦定理可得:2r=
a
sinA
=
2
21
3
,∴r=
21
3

OB
OC
=|OB|•|OC|cos∠BOC=
21
3
21
3
•cos120°=-
7
6

故答案为:-
7
6
点评:此题考查了三角形的面积公式,圆周角定理,正弦定理,以及平面向量的数量积运算法则,熟练掌握定理、公式及法则是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)在锐角△ABC中,角A、B、C所对的边分别为a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范围;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函数f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)当c=2a,且b=3
7
时,求a及△ABC的面积.

查看答案和解析>>

同步练习册答案