精英家教网 > 高中数学 > 题目详情
已知平面上三个向量|
a
|=|
b
|=|
c
|=2,它们之间的夹角都是120°.
(I)求
a
c
的值.
(II)求证:(
a
-
b
)⊥
c
分析:(I)直接代入向量的数量积的定义
a
c
=|
a
||
c
|cos120°可求
(II)要证明(
a
-
b
)⊥
c
,只要证明(
a
-
b
c
=0即可
解答:解:(I)
a
c
=|
a
||
c
|cos120°=2×2×(-
1
2
)=-2

(II)∵(
a
-
b
c
=
a
c
-
b
c
=|
a
||
c
|cos120°
-|
b
||
c
|cos120°

=2×2×(-
1
2
)
-2×2×(-
1
2
)
=0
∴(
a
-
b
)⊥
c
点评:本题主要考查了向量的数量积的定义及性质的简单应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上三个向量
a
b
c
的模均为1,它们相互之间的夹角均为120°.
(1)求证:(
a
-
b
)⊥
c

(2)若|k
a
+
b
+
c
|>1 (k∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上三个向量
a
 ,
b
 ,
c
,其中
a
=(1, 2)

(1)若|
c
|=2
5
,且
a
c
,求
c
的坐标;
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
)
,求
a
b
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上三个向量
a
b
c
的模均为1,它们相互之间的夹角为120°,
(1)求证:(
b
-
c
)⊥
a

(2)若|t
a
+
b
+
c
|>1
(t∈R),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年内蒙古巴彦淖尔市高三9月月考理科数学试卷(解析版) 题型:解答题

已知平面上三个向量的模均为1,它们相互之间的夹角均为

(I)求证:

(II)若,求的取值范围。

 

查看答案和解析>>

同步练习册答案