精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知角α,β的顶点在坐标原点,始边与X轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-
5
13
,角α+β的终边与单位圆交点的纵坐标是
3
5
,则cosα=
56
65
56
65
分析:根据角的范围及同角三角函数的基本关系求出sinβ,根据 α+β 的范围及cos(α+β)的值求出sin (α+β)的值,利用两角差的余弦公式计算cosα=cos[(α+β)-β]的值.
解答:解:由题意得 α、β∈(0,π),cosβ=-
5
13
,故
π
2
<β<π.
∴sinβ=
12
13
,∵sin(α+β)=
3
5
,∴
π
2
<α+β<π,
∴cos(α+β)=-
4
5

∴cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ=-
4
5
×(-
5
13
) +
12
13
×
3
5
=
56
65

故答案为:
56
65
点评:本题考查同角三角函数的基本关系,两角差的余弦公式的应用,注意角的范围的确定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案