精英家教网 > 高中数学 > 题目详情
5.在四面体OABC中,棱OA,OB,OC两两垂直,且|OA|=1,|OB|=2,|OC|=3,G为△ABC的重心,则$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OC}$)=-$\frac{4}{3}$.

分析 利用重心的性质和向量的三角形法则可得出$\overrightarrow{OG}$=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$),再由向量数量积的性质:向量的平方即为模的平方和向量垂直的条件:数量积为0,计算即可得到所求值.

解答 解:如图所示,连接AG并延长与BC相交于点D.
∵点G是底面△ABC的重心,
∴$\overrightarrow{AG}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{2}{3}$•$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{3}$($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$),
$\overrightarrow{OG}$=$\overrightarrow{OA}$+$\overrightarrow{AG}$=$\overrightarrow{OA}$+$\frac{1}{3}$($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)
=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$),
则$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OC}$)=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)•($\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OC}$)
=$\frac{1}{3}$[($\overrightarrow{OA}$+$\overrightarrow{OB}$)2-$\overrightarrow{OC}$2]=$\frac{1}{3}$($\overrightarrow{OA}$2+$\overrightarrow{OB}$2+2$\overrightarrow{OA}$•$\overrightarrow{OB}$-$\overrightarrow{OC}$2
=$\frac{1}{3}$(1+4+0-9)=-$\frac{4}{3}$.
故答案为:-$\frac{4}{3}$.

点评 本题考查重心的性质和向量的三角形法则,考查向量垂直的条件和向量的平方即为模的平方,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.我们称函数f(x)=$\frac{|x|}{|x|-1}$为“囧函数”,下列是关于“囧函数”的四个命题:
①?x∈(1,+∞),f(x)>1;
②?x1,x2∈(1,+∞),$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥0;
③命题p:函数f(x)=$\frac{|x|}{|x|-1}$的图象为轴对称图形,命题q:函数f(x)=$\frac{|x|}{|x|-1}$的图象存在对称中心;则(¬p)∨q为真命题;
④已知0<m<1,若“?x1∈(1,+∞),?x2∈(m,1),使得f(x1)=-f(x2)”为真命题,则m的最大值为$\frac{1}{2}$.
其中的真命题有①④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{4-{x}^{2}}$+$\frac{1}{\sqrt{sinx}}$的定义域是{x|0<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据下列条件求直线方程:
(1)已知直线l的倾斜角为60°,求与直线l平行且过点(-3,2)的直线方程;
(2)求过点A(-3,1)的直线中,与原点距离最远的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合M={(x.y)|x2+y2-6x+8y-39=0},N{(x,y)|x2+y2=r2},若M∩N=∅,则正数r的取值范围是(  )
A.0<r≤5B.0<r<5C.r>13D.r>13或0<r<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数y=f(x)的最小值为3,且f(-1)=f(3)=11.
(1)求函数f(x)的解析式.
(2)若函数g(x)=ex-f(x)(其中e=2.71828…),那么g(x)在区间(1,2)上是否存在零点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的各项均为正数,且2a1,$\frac{1}{2}$,3a2成等差数列.a2,$\frac{1}{3}$a3,a6成等比数列;
(I)求数列{an}的通项公式;
(Ⅱ)已知bn=log3$\frac{1}{{a}_{n}}$,记cn=an•bn,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(3x+1)=x2+3x+1,则f(10)=(  )
A.30B.6C.20D.19

查看答案和解析>>

同步练习册答案