已知函数f(x)=lnx+x2. (1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围; (2)在(1)的条件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的极小值; (3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.
解:(1)g(x)=f(x)-ax=lnx+x2-ax,g′(x)=+2x-a.
由题意,知g′(x)≥0对x∈(0,+∞)恒成立,即a≤min.
又x>0,2x+≥2,当且仅当x=时等号成立.
故min=2,所以a≤2. ……3分
(2)由(1)知,1<a≤2.令ex=t,则t∈[1,2],则h(x)=H(t)=t3-3at.
H′(t)=3t2-3a=3(t-)(t+).
由H′(t)=0,得t=或t=-(舍去),
∵a∈(1,2],∴∈,
①若1<t≤,则H′(t)<0,H(t)单调递减,h(x)在(0,ln]也单调递减;
②若<t≤2,则H′(t)>0,H(t)单调递增,h(x)在[ln,ln2]也单调递增.
故h(x)的极小值为h(ln)=-2a. ……7分
(3)设F(x)在(x0,F(x0))处的切线平行于x轴,其中F(x)=2lnx-x2-kx.
结合题意,有
①-②得2ln-(m+n)(m-n)=k(m-n),所以k=-2x0.由④得k=-2x0,
所以ln==.⑤
设u=∈(0,1),⑤式变为lnu-=0(u∈(0,1)).
设y=lnu-(u∈(0,1)),y′=-==>0,
所以函数y=lnu-在(0,1)上单调递增,因此,y<y|u=1=0,即lnu-<0.
也就是,ln<,此式与⑤矛盾.
所以F(x)在(x0,F(x0))处的切线不能平行于x轴.
科目:高中数学 来源: 题型:
已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函数y=g(x)-x在[0,1]上的最小值;
(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.
(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x-16,
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
查看答案和解析>>
科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com