精英家教网 > 高中数学 > 题目详情
已知f(n)=1+n∈N?),g(n)=2(-1)(n∈N?).
(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.
(1)当n=1时,f(1)>g(1);当n=2时,f(2)>g(2);当n=3时,f(3)>g(3).(2)f(n)>g(n)(n∈N*),
(1)当n=1时,f(1)>g(1);当n=2时,f(2)>g(2);当n=3时,f(3)>g(3).
(2)猜想:f(n)>g(n)(n∈N*),即1+>2(-1)(n∈N*).
下面用数学归纳法证明:①当n=1时,f(1)=1,g(1)=2(-1),f(1)>g(1).
②假设当n=k时,猜想成立,即1+>2(-1).
则当n=k+1时,f(k+1)=1+>2(-1)+=2-2,而g(k+1)=2(-1)=2-2,
下面转化为证明:.
只要证:2(k+1)+1=2k+3>2
需证:(2k+3)2>4(k+2)(k+1),即证:4k2+12k+9>4k2+12k+8,此式显然成立.
所以,当n=k+1时猜想也成立.综上可知:对n∈N*,猜想都成立,
即1+(n∈N*)成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:
(1)函数f(x)在区间(0,1)是增函数;
(2)an<an+1<1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明对n∈N都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)解不等式
2x2-4x-1
x2-2x-3
≥3

(2)a,b∈R+,2c>a+b,求证c-
c2-ab
<a<c+
c2-ab

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明1++…+> (n∈N*)成立,其初始值至少应取(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在各项为正的数列中,数列的前n项和满足

(1)求;(2) 由(1)猜想数列的通项公式;(3) 求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(n)=1+(n∈N*),则f(k+1)-f(k)=________.

查看答案和解析>>

同步练习册答案