精英家教网 > 高中数学 > 题目详情

【题目】为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:

优秀

非优秀

总计

男生

40

20

60

女生

20

30

50

总计

60

50

110

(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;

(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

【答案】1)有%的把握认为环保知识是否优秀与性别有关;(2)分布列见解析,

【解析】试题分析:(1)利用公式计算得,故有把握;(2的可能取值为,且满足二项分布,由此求得分布列和期望.

试题解析:

1

因为

所以有99%的把握认为环保知识是否优秀与性别有关.

2的可能取值为0123

所以的分布列为:

X

0

1

2

3

P





因为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求下列各式的值:

(1)

(2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日 期

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

购买意愿强

购买意愿弱

合计

20~40岁

大于40岁

合计

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)讨论函数的单调性;

(2)若存在两个极值点,求证:无论实数取什么值都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四种说法:

①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;

②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)= ﹣p

④回归直线一定过样本点的中心( ).

其中正确的说法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求证:当x>1时,f(x)>0成立;

(2)若t> ,判断函数g(x)=x[f(x)+t+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数), 上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.

(1)求线段的中点的轨迹的普通方程;

(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.

查看答案和解析>>

同步练习册答案