精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的准线与双曲线相交于两点,双曲线的一条渐近线方程是,点是抛物线的焦点,且是等边三角形,则该双曲线的标准方程是( )

A.B.

C.D.

【答案】D

【解析】

由题意已知抛物线的准线与双曲线相交于两点,点是抛物线的焦点,且是等边三角形,由圆锥曲线的对称性和等边三角形的性质可求得的坐标分别为,将此点代入双曲线方程,得的一个方程,再由渐近线方程,又得的一个方程,联立即可求得的值,即可得到双曲线的标准方程.

解:由题意可得抛物线的准线为,焦点坐标是

又抛物线的准线与双曲线相交于两点,又是等边三角形,

则有两点关于轴对称,横坐标是,纵坐标是

将坐标代入双曲线方程得

又双曲线的一条渐近线方程是,得

①②解得

所以双曲线的方程是

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:

(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;

(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;

(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是正方形,且四个侧面均为等边三角形.延长至点使,连接.

1)证明:

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,G是线段AD延长线一点,平面ABCDF是线段PG的中点;

求证:平面PAC

时,求平面PCF与平面PAG所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数,我们准备张不同的卡片,其中写有数字0,1,…,的卡片各有如果用这些卡片表示进制数,通过不同的卡片组合,这些卡片可以表示个不同的整数例如时,我们可以表示出个不同的整数假设卡片的总数为一个定值,那么进制的效率最高则意味着张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?  

A. 二进制 B. 三进制 C. 十进制 D. 十六进制

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌赛马是史记中记载的一个故事,说的是齐国将军田忌经常与齐国众公子赛马,孙膑发也们的马脚力都差不多,都分为上、中、下三等于是孙膑给田忌将军制定了一个必胜策略:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得公子们许多赌注假设田忌的各等级马与某公子的各等级马进行一场比赛获胜的概率如表所示:

田忌的马获胜概率公子的马

上等马

中等马

下等马

上等马

1

中等马

下等马

0

比赛规则规定:一次比由三场赛马组成,每场由公子和田忌各出一匹马出骞,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.

如果按孙膑的策略比赛一次,求田忌获胜的概率;

如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

同步练习册答案