精英家教网 > 高中数学 > 题目详情
11.若实数a,b满足4a=3b=6,则$\frac{1}{a}+\frac{2}{b}$=2.

分析 由4a=3b=6,化为对数式$a=\frac{lg6}{lg4}$,b=$\frac{lg6}{lg3}$.代入即可得出.

解答 解:由4a=3b=6,
可得$a=\frac{lg6}{lg4}$,b=$\frac{lg6}{lg3}$.
则$\frac{1}{a}+\frac{2}{b}$=$\frac{lg4}{lg6}$+$\frac{2lg3}{lg6}$=$\frac{2lg6}{lg6}$=2.
故答案为:2.

点评 本题考查了指数式化为对数式、对数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.方程2a=|ax-1|(a>0且a≠1)有两个不同的解,则a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且2Sn+3=3an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3an,Tn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+…+$\frac{{b}_{n}}{{a}_{n}}$,求证:${T_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边分别为a,b,c,若$B+C=\frac{2π}{3}$,$a=\sqrt{2}$,则b2+c2的取值范围是(  )
A.(3,6)B.(3,6]C.(2,4)D.(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤3}\end{array}\right.$,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是(  )
A.[-6,2]B.(-6,2)C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.f(x)=loga$\frac{1-mx}{1-x}$为奇函数(a>1)
(1)求实数m的值;
(2)解不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1,S2,S4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则$\frac{3-i}{1+i}$的模与虚部的积等于(  )
A.$2\sqrt{5}i$B.$-2\sqrt{5}i$C.$2\sqrt{5}$D.$-2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn满足:Sn+1=kSn+p(kp≠0),a1=p(n∈N).
(1)求证:数列{an}是以k为公比的等比数列.并求出数列{an}的通项公式;
(2)已知k>-1,m,n是正整数,求证:km+kn≤1+km+n
(3)若p=1,k>-1,求证;Sn≤$\frac{n({a}_{1}+{a}_{2})}{2}$.

查看答案和解析>>

同步练习册答案