精英家教网 > 高中数学 > 题目详情
18.集合I={1,2,3,4,5},集合A、B为集合I的两个非空子集,若集合A中元素的最大值小于集合B中元素的最小值,则满足条件的A、B的不同情形有(  )种.
A.46B.47C.48D.49

分析 通过讨论B中最小元素,从而判断出符合条件的集合A,求和即可.

解答 解:(1).B中最小元素是5时:
B={5},A可以为{1,2,3,4}的非空子集,共15个,
如 A={1,2,3,4},A={1,2,3}等,共15个组合;
(2).B中最小元素是4时:
B有{4,5} {4}两种,A可以为{1,2,3}的非空子集,共7个,
共14个组合
(3).B中最小元素是3时:
B有{3},{3,4},{3,5},{3,4,5}四种,A可以为{1,2}的非空子集,共3个,
共12个组合;
(4).B中最小元素是2时:
B有{2},{2,3},{2,4},{2,5}{2,3,4},{2,3,5},{2,4,5}{2,3,4,5}八种,A={1},
共8个组合;
综上,共15+14+12+8=49;
故选:D.

点评 本题考查排列组合的实际应用,本题解题的关键是理解题意,能够看懂使B中的最小数大于A中的最大数的意义,本题是一个难题也是一个易错题,需要认真解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知首项为1,公差不为0的等差数列{an}的第2,4,9项成等比数列,则这个等比数列的公比q=$\frac{5}{2}$;等差数列{an}的通项公式an=3n-2;设数列{an}的前n项和为Sn,则Sn=$\frac{3{n}^{2}-n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{3}$x3+x2+ax+1,曲线y=f(x)在点(0,1)处的切线为l
(Ⅰ)若直线l的斜率为-3,求函数f(x)的单调区间;
(Ⅱ)若函数是f(x)区间[-2,a]上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将正奇数排成如图所示的三角形数表:
其中第i行第j个数记为aij(i、j∈N*),例如a42=15,若aij=2015,则i+j=63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A={x|x2-5x+4≤0},B={x|x2-2ax+a+2<0}
(1)用区间表示A;    
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=$\frac{4^x}{{{4^x}+2}}$,
(1)若0<a<1,求f(a)+f(1-a)的值;
(2)求$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2012}{2015})+f(\frac{2013}{2015})+f(\frac{2014}{2015})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆(x-4)2+y2=9和圆x2+(y-3)2=4的公切线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知全集U={1,2,3,4,5},A={1,2,3},那么∁UA的子集个数有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:4x2+y2=1,直线l:y=kx+m,若直线l与椭圆C交于点A,B.
(1)若k=1,椭圆存在两点M,N关于直线l对称,求实数m的取值范围;
(2)若m=$\frac{1}{2}$,椭圆存在两点P,Q关于直线l对称,求实数k的取值范围.

查看答案和解析>>

同步练习册答案