精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.
(I)因为函数的定义域为{x|x>0},
当a=5时,f(x)=x2-5x+4+2lnx,f′(x)=2x-5+
2
x
=
2x2-5x+2
x
=
2(x-
1
2
)(x-2)
x

所以由f'(x)<0,解得
1
2
<x<2

即函数的单调递减区间为(
1
2
,2
).
(Ⅱ)因为x>0,所以f′(x)=2x+
2
x
-a≥2
4
-a=4-a

当且仅当x=1时取等号.因为直线l的斜率存在最小值-2,
所以4-a=-2,即a=6.
当l取得最小斜率时,因为f(-1)=-1,即切点为(1,-1).
从而切线方程l:y+1=-2(x-1),即:2x+y-1=0.
(Ⅲ)f′(x)=2x+
2
x
-a=
2x2-ax+2
x

因为f(x)分别在x1、x2(x1≠x2)处取得极值,
所以x1、x2(x1≠x2)是方程
2x2-ax+2
x
=0

即2x2-ax+2=0的两个不等正根.
则△=a2-16>0解得a2>16,且x1+x2=
a
2
x1x2=1

从而f(x1)+f(x2)=
x21
+
x22
-a(x1+x2)+8+2ln?(x1x2)

=(x1+x2)2-2x1x2-a(x1+x2)+8+2ln?(x1x2)
=(
a
2
)
2
-2×1-a×
a
2
+8+2ln1=-
a2
4
+6

因为a2>16,所以-
a2
4
+6<2

即不等式f(x1)+f(x2)<2成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案