精英家教网 > 高中数学 > 题目详情

【题目】若函数满足:在区间上均有定义;函数在区间上至少有一个零点,则称上具有关系W.

,判断上是否具有关系W,并说明理由;

上具有关系W,求实数m的取值范围.

【答案】(1)见解析;(2) .

【解析】

(1)根据[a,b]上至少有一个零点,则称f(x)和g(x)在区间[a,b]上具有关系G.利用特殊值但判断出即可;(2)根据在区间[a,b]上具有关系G的性质,结合x∈[1,4],利用二次函数的性质,讨论m即可.

(1)f(x)和g(x)在[1,3]具有关系G.

h(x)=f(x)﹣g(x)=lnx+x﹣2,

∵h(1)=﹣1<0,h(2)=ln2>0;

h(1)h(2)<0,又h(x)在[1,2]上连续,

故函数y=f(x)﹣g(x)在区间[1,2]上至少有一个零点,

f(x)和g(x)在[1,3]上具有关系G;

(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2

m≤0时,易知h(x)在[1,4]上不存在零点,

m>0时,h(x)=

1≤x≤2时,

由二次函数知h(x)在[1,2]上单调递减,

m∈[,3],

m∈(0,)∪(3,+∞)时,

m∈(0,),则h(x)在(2,4]上单调递增,

h(2)>0,h(4)>0;

故没有零点;

m∈(3,+∞),则h(x)在(2,4]上单调递减,

此时,h(2)=﹣4m+1<0;

故没有零点;

综上所述,

f(x)=2|x﹣2|+1g(x)=mx2[1,4]上具有关系G,

m∈[,3].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000.

1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是奇函数.

1求常数的值;

2,试判断函数的单调性,并加以证明;

3,且函数在区间上的最小值为,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 =2 ,△DF1F2的面积为

(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

女员工

16

男员工

14

合计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通项公式an;

(2)求数列{|an-n-2|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}和{bn}满足a1a2a3…an= (n∈N*).若{an}为等比数列,且a1=2,b3=6+b2
(1)求an和bn
(2)设cn= (n∈N*).记数列{cn}的前n项和为Sn
(i)求Sn
(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,点(an , bn)在函数f(x)=2x的图象上(n∈N*).
(1)若a1=﹣2,点(a8 , 4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn
(2)若a1=1,函数f(x)的图象在点(a2 , b2)处的切线在x轴上的截距为2﹣ ,求数列{ }的前n项和Tn

查看答案和解析>>

同步练习册答案