精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)已知函数

(1)求函数的最小正周期和单调递增区间;

(2)若在中,角的对边分别为为锐角,且,求面积的最大值

【答案】(1)最小正周期,单调递增区间为;(2)

【解析】

试题分析:(1)首先根据二倍角公式以及辅助角公式对的表达式进行化简:,从而可知最小正周期,再根据正弦函数上单调递增,从而可令,解得,即有单调递增区间为;(2)由(1)及条件可知从而根据余弦定理可以得到满足的一个等式:,再由基本不等式可知,即有,从而,即有面积的最大值为

试题解析:(1)最小正周期,令,即单调递增区间为;(2)由(1)可得:

由余弦定理可得:

,当且仅当时,等号成立,

面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从每条曲线上各取两个点,其坐标分别是

(1)求 的标准方程;

(2)是否存在直线满足条件:①过的焦点;②与交于不同的两点且满足?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个命题:

(1)函数内单调递增。

(2)函数的最小正周期为2

(3)函数的图像关于点对称。

(4)函数的图像关于直线成轴对称。

(5)把函数 的图象向右平移得到函数的图象。

其中真命题的序号是________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

I)若花店一天购进枝玫瑰花,写出当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.

II)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量

频数

天记录的各需求量的频率作为各需求量发生的概率.

i)若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列,数学期望.

ii)若花店计划一天购进枝或枝玫瑰花,你认为应购进枝还是枝?只写结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 底面 ,且 .点在棱上,平面与棱相交于点

)求证: 平面

)求证: 平面

)求三棱锥的体积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是.

(1)求椭圆的标准方程;

(2)直线过点且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数集,其中 ,定义向量集.若对于任意,使得,则称具有性质.例如具有性质

)若,且具有性质,求的值.

)若具有性质,求证: ,且当时,

)若具有性质,且 为常数),求有穷数列 的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中,内角的对边分别为,已知,且 .

(1)求的面积.

(2)已知等差数列的公差不为零,若,且成等比数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列为递增的等比数列,

数列满足

(Ⅰ)求数列的通项公式;(Ⅱ)求证: 是等差数列;

(Ⅲ)设数列满足,且数列的前项和,并求使得对任意都成立的正整数的最小值.

查看答案和解析>>

同步练习册答案