精英家教网 > 高中数学 > 题目详情
对于项数都为m的数列{an}和{bn},记bk为a1,a2,…,ak(k=1,2,…,m)中的最小值,给出下列命题:
①若数列{bn}的前5项依次为5,5,3,3,1,则a4=3;
②若数列{bn}是递减数列,则数列{an}也是递减数列;
③数列{bn}可能是先递减后递增的数列;
④若数列{an}是递增数列,则数列{bn}是常数列.
其中,是真命题的为(  )
A、①④B、①③C、②③D、②④
分析:①数列{bn}的前5项依次为5,5,3,3,1可推出a3=3,a4≥3即可;
②{an}是递减数列等价于{bn}是递减数列;
③④数列{an}递增或常数列,则{bn}是常数列,数列{an}递减,则{bn}是递减.
解答:解:①由数列{bn}的前5项依次为5,5,3,3,1,
可知a1=5,a2≥5,a3=3,a4≥3,
∴①错误;
②若数列{bn}是递减数列,则数列{an}也是递减数列是正确的;
若数列{an}是递增数列或常数列时,则{bn}是常数列,
若数列{an}是递减数列时,则{bn}是递减的,
∴③是错误的;④是正确的.
故选:D.
点评:本题考查递减数列和递增数列的性质,和数列概念的应用.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m>3,对于项数为m的有穷数列{an},令bk为a1,a2,…ak(k≤m)中最大值,称数列{bn}为{an}的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数1,2,…m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.若m=4,则创新数列为3,4,4,4的所有数列{cn} 为
3,4,2,1或3,4,1,2
3,4,2,1或3,4,1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青浦区一模)设m>3,对于项数m的有穷数列{an},令bk为a1,a2,…,ak(k≤m)中最大值,称数列{bn}为{an}的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数1,2,…,m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.
(1)若m=4,写出创新数列为3,4,4,4的所有数列{cn};
(2)是否存在数列{cn}的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列{cn},使它的创新数列为等差数列?若存在,求出满足所有条件的数列{cn}的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)设m>3,对于项数为m的有穷数列{an},令bk为a1,a2,a3…ak(k≤m)中的最大值,称数列{bn}为{an}的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数1、2…m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.
(Ⅰ)若m=5,写出创新数列为3,5,5,5,5的所有数列{cn};
(Ⅱ)是否存在数列{cn}的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由;
(Ⅲ)是否存在数列{cn},使它的创新数列为等差数列?若存在,求出所有符合条件的数列{cn}的个数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案