精英家教网 > 高中数学 > 题目详情

已知椭圆E:数学公式(a>b>0)的左焦点为F,右顶点为A,离心率e=数学公式
(I)若点F在直线l:x-y+1=0上,求椭圆E的方程;
(II)若0<a<1,试探究椭圆E上是否存在点P,使得数学公式?若存在,求出点P的个数;若不存在,请说明理由.

解:(Ⅰ)∵F(-c,0)在直线l:x-y+1=0上,
∴-c+1=0,即c=1,
,∴a=2c=2,
∴b=
从而椭圆E的方程为
(Ⅱ)由,得

椭圆E的方程为,其左焦点为,右顶点为A(a,0),
假设椭圆E上存在点P(x0,y0)(-a≤x0≤a),使得
∵点P(x0,y0)在椭圆上,∴

=
=
==1.
解得:x0=a±2,
∵0<a<1,∴
x0=a±2∉[-a,a],
故不存在点P,使得
分析:(Ⅰ)椭圆的左焦点F在直线l:x-y+1=0上,把F的坐标代入直线方程可求c的值,与离心率e=联立后可求a的值,则椭圆E的方程可求;
(Ⅱ)假设椭圆E上存在点P,使得,设出P点坐标,求出向量,代入后求出点P的横坐标,由题目给出的a的范围推出点P横坐标不在[-a,a]内,从而得出矛盾,假设错误.
点评:本题考查了直线与圆锥曲线的关系,考查了椭圆的标准方程,训练了存在性问题的处理方法,对于存在性问题,解决的思路是假设结论成立,把假设作为已知条件进行推理,得出正确的等式关系则假设成立,肯定结论,否则假设不成立,否定结论.此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年河南省洛阳市高三上学期期末考试理科数学 题型:解答题

(本小题满分12分)

    已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上

   (1)求椭圆E的方程;

   (2)设l1l2是过点G(,0)且互相垂直的两条直线,l1交E于A, B两点,l2交E于C,D两点,求l1的斜率k的取值范围;

   (3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?

若经过,求出该定点坐标;若不经过,请说明理由。

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:数学公式(a>b>0)的焦点为F1,F2,离心率为数学公式,直线l:x+2y-2=0与x轴,y轴分别交于点A,B.
(Ⅰ)若点A是椭圆E的一个顶点,求椭圆E的方程;
(Ⅱ)若线段AB上存在点P满足|PF1+PF2|=2a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:数学公式(a>b>0)的右焦点为F(c,0),离心率为数学公式,A(-a,0),B(0,b),且△ABF的面积为数学公式,设斜率为k的直线过点F,且与椭圆E相交于M、N两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若 数学公式数学公式数学公式数学公式,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:江西省同步题 题型:解答题

已知椭圆E:(a>b>0)的右焦点为F(c,0),离心率为,A(﹣a,0),
B(0,b),且△ABF的面积为,设斜率为k的直线过点F,且与椭圆E相交于M、N两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若 ·,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年福建省漳州市漳浦县道周中学高考数学模拟试卷(解析版) 题型:解答题

已知椭圆E:(a>b>0)过点P(3,1),其左、右焦点分别为F1,F2,且
(1)求椭圆E的方程;
(2)若M,N是直线x=5上的两个动点,且F1M⊥F2N,圆C是以MN为直径的圆,其面积为S,求S的最小值以及当S取最小值时圆C的方程.

查看答案和解析>>

同步练习册答案