精英家教网 > 高中数学 > 题目详情

设F1,F2分别为双曲线的左,右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近方程为

[  ]
A.

3x±4y=0

B.

3x±5y=0

C.

4x±3y=0

D.

5x±4y=0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,若双曲线的离心率介于整数k与k+1之间,则k=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)设F1,F2分别为双曲线
x2
a2
-
y2
b2
= 1
的左、右焦点,点P在双曲线的右支上,且|PF2|=|1FF2|,F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知A、B为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1
的公共顶点,P、Q分别为双曲线和椭圆上不同于A、B的动点,且
OP
OQ
(λ∈R,λ>1)
.设AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4
(1)求证:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)设F1、F2分别为双曲线和椭圆的右焦点,若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且点P的横坐标为
5
4
c(c为半焦距),则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案