精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow a=(1,\;\;-2)$,$\overrightarrow b=(1,\;\;0)$,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-4\overrightarrow b$垂直,则实数λ的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

分析 先求出$λ\overrightarrow a+\overrightarrow b$=(λ+1,-2λ),$\overrightarrow a-4\overrightarrow b$=(-3,-2),再由向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-4\overrightarrow b$垂直,能求出实数λ的值.

解答 解:∵$\overrightarrow a=(1,\;\;-2)$,$\overrightarrow b=(1,\;\;0)$,
∴$λ\overrightarrow a+\overrightarrow b$=(λ+1,-2λ),$\overrightarrow a-4\overrightarrow b$=(-3,-2),
∵向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-4\overrightarrow b$垂直,
∴($λ\overrightarrow a+\overrightarrow b$)($\overrightarrow a-4\overrightarrow b$)=-3(λ+1)+4λ=0,
解得λ=3.
故选:C.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设全集U={1,2,3,4,5},集合A={1,2},B={2,3,5},则(∁UA)∩B=(  )
A.{3,5}B.{3,4,5}C.{2,3,4,5}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在R上的函数f(x)满足:
①f(1)=2; ②当x>0时,f(x)>1; ③对任意的x,y∈R,都有f(x+y)=f(x)•f(y).
(1)求证:f(0)=1,且对任意x<0时,0<f(x)<1;
(2)求证:f(x)在R上是单调递增函数;
(3)求满足f(3x-x2)>4的所有x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于x的方程$\sqrt{1-{x^2}}+a=x$有两个不相等实数根,则实数a的取值范围是(  )
A.$(1,\sqrt{2}]$B.$(-1,\sqrt{2}]$C.$(-\sqrt{2},-1]$D.$(-\sqrt{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,∠EBD=45°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)是R上的可导函数,当x≠0时,有$f'(x)+\frac{f(x)}{x}>0$,则函数$F(x)=x•f(x)-\frac{1}{x}$的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,直线l经过点P(-3,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xoy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-2ρcosθ-3=0.
(1)若直线l与曲线C有公共点,求倾斜角α的取值范围;
(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x2-2x+3的顶点坐标为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案