(本小题满分12分)
已知函数.
(1)判断其奇偶性;
(2)指出该函数在区间(0,1)上的单调性并证明;
(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.
科目:高中数学 来源: 题型:解答题
(本小题12分)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。设(单位:米),若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设,, 其中是不等于零的常数,
(1)、(理)写出的定义域(2分);
(文)时,直接写出的值域(4分)
(2)、(文、理)求的单调递增区间(理5分,文8分);
(3)、已知函数,定义:,.其中,表示函数在上的最小值,
表示函数在上的最大值.例如:,,则 , ,
(理)当时,设,不等式
恒成立,求的取值范围(11分);
(文)当时,恒成立,求的取值范围(8分);
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求在射线上,在射线上,且过点,其中米,米. 记三角形花园的面积为.
(1)设米,将表示成的函数.
(2)当的长度是多少时,最小?并求的最小值.
(3)要使不小于平方米,则的长应在什么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com