精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)判断其奇偶性;
(2)指出该函数在区间(0,1)上的单调性并证明;
(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

解:(1)函数的定义域为    ………………………2分

是奇函数 ;  …………………………4分
(2)函数在(0,1)上是增函数
证明:任取满足
 ……… 8分

因此函数在(0,1)上是递增函数;…………………… 10分
(3)由于上的奇函数,在(0,1)上又是递增函数,
因而该函数在(-1,0)上也是增函数.…………… 12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。设(单位:米),若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数(1)求的定义域;(2)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,, 其中是不等于零的常数,
(1)、(理)写出的定义域(2分);
(文)时,直接写出的值域(4分)
(2)、(文、理)求的单调递增区间(理5分,文8分);
(3)、已知函数,定义:.其中,表示函数上的最小值,
表示函数上的最大值.例如:,则 ,   ,
(理)当时,设,不等式
恒成立,求的取值范围(11分);
(文)当时,恒成立,求的取值范围(8分);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数.
(1)求证:不论为何实数总是为增函数;
(2)确定的值, 使为奇函数;
(3)当为奇函数时, 求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,互相垂直的两条公路旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求在射线上,在射线上,且过点,其中米,米. 记三角形花园的面积为.
(1)设米,将表示成的函数.
(2)的长度是多少时,最小?并求的最小值.
(3)要使不小于平方米,则的长应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

((本小题满分12分)
已知函数上的增函数,
(Ⅰ)若,求证:
(Ⅱ)判断(Ⅰ)中命题的逆命题是否成立,并用反证法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14分)
(1)已知是奇函数,求常数m的值;
(2)画出函数的图象,并利用图象回答:
k为何值时,方程|3x-1|=k无解?有一解?有两解?

查看答案和解析>>

同步练习册答案