精英家教网 > 高中数学 > 题目详情
设椭圆C2
x2
a2
+
y2
b2
=1(a>b>0),抛物线C2:x2+by=b2
(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),Q(3
3
5
4
)
,又M、N为C1与C2不在y轴上的两个交点,若△AMN的垂心为B(0,
3
4
b)
,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程.
分析:(1)由已知椭圆焦点(c,0)在抛物线上,可得:c2=b2,由a2=b2+c2,求得C1的离心率;
(2)由题设可知M、N关于y轴对称,设M(-x1,y1),N(x1,y1)(x1>0),由△AMN的垂心为B,根据三角形的垂心是三条高线的交点,可知
BM
AN
=0
,再根据三角形的重心坐标公式求得△QMN的重心,代入抛物线C2:x2+by=b2,即可求得椭圆C和抛物线C2的方程.
解答:精英家教网解:
(1)由已知椭圆焦点(c,0)在抛物线上,可得:c2=b2
a2=b2+c2=2c2,有
c2
a2
=
1
2
?e=
2
2

(2)由题设可知M、N关于y轴对称,设M(-x1,y1),N(x1,y1)(x1>0),由△AMN的垂心为B,有
BM
AN
=0?-
x
2
1
+(y1-
3
4
b)(y1-b)=0

由点N(x1,y1)在抛物线上,x12+by1=b2,解得:y1=-
b
4
y1=b(舍去)

x1=
5
2
b,M(-
5
2
b,-
b
4
),N(
5
2
b,-
b
4
)

得△QMN重心坐标(
3
b
4
)

由重心在抛物线上得:3+
b2
4
=b2,所以b=2
M(-
5
,-
1
2
),N(
5
,-
1
2
)

又因为M、N在椭圆上得:a2=
16
3

椭圆方程为
x2
16
3
+
y2
4
=1
,抛物线方程为x2+2y=4.
点评:此题是个中档题.考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程.考查抛物线的定义和简单的几何性质,特别是问题(2)的设问形式,增加了题目的难度,同时考查了三角的垂心和重心有关性质和公式,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线C1:x2+by=b2经过椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点.
(1)求椭圆C2的离心率;
(2)设Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:x2+by=b2经过椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点.设Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心(中线的交点)在抛物线C1上,
(1)求C1和C2的方程.
(2)有哪几条直线与C1和C2都相切?(求出公切线方程)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2为左、右焦点,离心率e=
1
2
,一个短轴的端点(0,
3
);抛物线C2:y2=4mx(m>0),焦点为F2,椭圆C1与抛物线C2的一个交点为P.
(1)求椭圆C1与抛物线C2的方程;
(2)直线l经过椭圆C1的右焦点F2与抛物线C2交于A1,A2两点,如果弦长|A1A2|等于△PF1F2的周长,求直线l的斜率.

查看答案和解析>>

同步练习册答案