精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,为坐标原点,CD两点的坐标为,曲线上的动点P满足.又曲线上的点AB满足.

1)求曲线的方程;

2)若点A在第一象限,且,求点A的坐标;

3)求证:原点到直线AB的距离为定值.

【答案】(1)(2)(3)证明见解析

【解析】

1知,曲线是以为焦点,长轴的椭圆,即可求曲线的方程(2)设直线的方程为,则直线的方程为与椭圆方程联立,由,即可求点的坐标(3分类讨论,设直线的方程与椭圆方程联立,求出原点到直线的距离,即可证明原点到直线的距离为定值

1)由知,曲线E是以CD为焦点,长轴的椭圆,

设其方程为,则有

∴曲线E的方程为

2)设直线OA的方程为,则直线OB的方程为

由则,解得

同理,由则解得.

解得,因点A在第一象限,故

此时点A的坐标为

3)设

当直线AB平行于坐标轴时,由AB两点之一为与椭圆的交点,

解得

此时原点到直线AB的距离为

当直线AB不平行于坐标轴时,设直线AB的方程

代入得

原点到直线AB的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点

(1)求曲线的直角坐标方程;

(2)若点在曲线上的两个点且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右焦点分别是,点,若的内切圆的半径与外接圆的半径的比是.

1)求椭圆C的方程;

2)点M是椭圆C的左顶点,PQ是椭圆上异于左、右顶点的两点,设直线MPMQ的斜率分别为,若,试问直线PQ是否过定点?若过定点,求该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校决定为本校上学所需时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分钟),将600人随机编号为001,002,…,600,抽取的50名学生上学所需时间均不超过60分钟,将上学所需时间按如下方式分成六组,第一组上学所需时间在[0,10),第二组上学所需时间在[10,20)…,第六组上学所需时间在[50,60],得到各组人数的频率分布直方图,如下图

(1)若抽取的50个样本是用系统抽样的方法得到,且第一个抽取的号码为006,则第五个抽取的号码是多少?

(2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为ab,求满足的事件的概率;

(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点上,以为切点的的切线的斜率为,过外一点(不在轴上)作的切线,点为切点,作平行于的切线(切点为),点分别是与的交点(如图):

1)用的纵坐标表示直线的斜率;

2)若直线的交点为,证明的中点;

3)设三角形面积为,若将由过外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做切线三角形,如,再由切线三角形,并依这样的方法不断作切线三角形……,试利用切线三角形的面积和计算由抛物线及所围成的阴影部分的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等差数列,其公差大于零.若线段的长分别为,则( .

A.对任意的,均存在以为三边的三角形

B.对任意的,均不存在以为三边的三角形

C.对任意的,均存在以为三边的三角形

D.对任意的,均不存在以为三边的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面为等腰梯形,.平面平面,四边形为菱形,.

1)求证:

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中的导函数,设,且恒成立.

1)求的取值范围;

2)设函数的零点为,函数的极小值点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆,设是椭圆上任一点,从原点向圆作两条切线,切点分别为

(1)若直线互相垂直,且点在第一象限内,求点的坐标;

(2)若直线的斜率都存在,并记为,求证:

查看答案和解析>>

同步练习册答案