精英家教网 > 高中数学 > 题目详情
(2013•天津)设变量x,y满足约束条件
3x+y-6≥0
x-y-2≤0
y-3≤0
,则目标函数z=y-2x的最小值为(  )
分析:先根据条件画出可行域,设z=y-2x,再利用几何意义求最值,将最小值转化为y轴上的截距最小,只需求出直线z=y-2x,过可行域内的点B(5,3)时的最小值,从而得到z最小值即可.
解答:解:设变量x、y满足约束条件 
3x+y-6≥0
x-y-2≤0
y-3≤0

在坐标系中画出可行域三角形,
平移直线y-2x=0经过点A(5,3)时,y-2x最小,最小值为:-7,
则目标函数z=y-2x的最小值为-7.
故选A.
点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津)设a,b∈R,则“(a-b)a2<0”是“a<b”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设函数f(x)=ex+x-2,g(x)=lnx+x2-3.若实数a,b满足f(a)=0,g(b)=0,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,离心率为
3
3
,过点F且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(Ⅰ)求椭圆的方程;
(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设a∈[-2,0],已知函数f(x)=
x3-(a+5)x,x≤0
x3-
a+3
2
x2+ax,
x>0

(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设a+b=2,b>0,则当a=
-2
-2
时,
1
2|a|
+
|a|
b
取得最小值.

查看答案和解析>>

同步练习册答案