精英家教网 > 高中数学 > 题目详情

【题目】如图,边长为2的菱形ABCD中,∠A=60°,E、F分别是BC,DC的中点,G为 BF、DE的交点,若 =

(1)试用 表示
(2)求 的值.

【答案】
(1)解:由题意, = + = + = + = +

= + = + = =

E、F分别是BC,DC的中点,G为 BF、DE的交点

所以G为△BCD的重心,设BD中点为H,则

= = × =﹣ =﹣ + )=﹣


(2)解:

=

= | || |cos60°﹣

= ×4﹣ ×2×2× ×4

=﹣1.


【解析】(1)由题意,根据平面向量的线性表示与运算法则,用 表示出 ;(2)根据平面向量的数量积运算,求出 即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

1)求试销5天的销量的方差和的回归直线方程;

2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,为了获得最大利润,该单元卷的单价卷的单价应定为多少元?

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:

组号

分组

频数

频率

第1组

第2组

第3组

20

第4组

20

第5组

10

合计

100

(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;

(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官进行面试,求:第4组至少有一名选手被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如下表:

编号

成绩

1

2

3

4

5

物理(

90

85

74

68

63

数学(

130

125

110

95

90

(1)求数学成绩关于物理成绩的线性回归方程精确到),若某位学生的物理成绩为80分,预测他的数学成绩;

(2)要从抽取的五位学生中随机选出三位参加一项知识竞赛,以表示选中的学生的数学成绩高于100分的人数,求随机变量的分布列及数学期望.

(参数公式: .)

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点
(1)求f(x)的解析式;
(2)已知 ,且 ,求f(α﹣β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方形中, 的中点为点 的中点为点,沿向上折起得到,使得面,此时点位于点处.

(Ⅰ)证明:

(Ⅱ)求面与面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A,B,C的对边分别是a,b,c,且2cos2 = sinB,a=3c.
(1)求角B的大小和tanC的值;
(2)若b=1,求△ABC的面积.

查看答案和解析>>

同步练习册答案