精英家教网 > 高中数学 > 题目详情
14.若集合M={x|1<x<4},N={x|x2-7x<0},则M∩N等于(  )
A.{x|0<x<4}B.{x|1<x<7}C.{x|1<x<4}D.{x|4<x<7}

分析 求解不等式化简集合M、N,然后直接利用交集运算求解.

解答 解:集合M={x|1<x<4},N={x|x2-7x<0}={x|0<x<7},
则M∩N={x|1<x<4}.
故选:C.

点评 本题考查了交集及其运算,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ为参数),以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C2的极坐标方程是ρsin($θ-\frac{π}{6}$)=0,且曲线C1与曲线C2在第一象限的交点为A,长方形ABCD的顶点都在C1上(其中A、B、C、D依次逆时针次序排列)求A、B、C、D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知一次函数f(x)满足f[f(x)]=4x+3,求f(x);
(2)已知函数f(x)满足3f(x)+2f(-x)=2x+5,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x+$\frac{a}{x}$(a>0)在(0,3]上单调递减,则实数a的取值范围是[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法中
①命题“每个指数函数都是单调函数”是全称命题,而且是真命题;
②若m?α,n?α,m,n是异面直线,那么n与α相交;
③设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=2a(a>0),则动点P的轨迹是椭圆;
④若实数k满足0<k<9,则曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1与曲线$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1有相同的焦点.
其中正确的为①④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,若椭圆C两焦点的极坐标分别是$(\sqrt{2},0),(\sqrt{2},π)$,长轴长是4.
(I)求椭圆C的参数方程;
(Ⅱ)在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(满分100分,均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图.根据图形的信息,回答下列问题:
(1)求第四小组的频率,补全这个频率分布直方图;并估计该校学生的数学成绩的中位数.(精确到0.1);
(2)按分层抽样的方法在数学成绩是[60,70),[70,80)的两组学生中选6人,再在这6人种任取两人,求他们的分数在同一组的概率;
(3)若从全市参加高一年级期末考试的学生中,任意抽取3个学生,设这3个学生中数学成绩为80分以上(包括80分)的人数为X,(以该校学生的成绩的频率估计概率),求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U是实数集R,M={x|x2>4},N为函数y=ln(4x-3-x2)的定义域,则图中阴影部分所表示的集合是{x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“?x∈R,x>sinx”的否定是?x∈R,x≤sinx.

查看答案和解析>>

同步练习册答案