精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过点的直线两点,且满足以线段为直径的圆,圆心为,且过坐标原点.

1)求抛物线的方程;

2)若圆过点,求直线的方程和圆的方程.

【答案】12)当时,,当时,

【解析】

1)依题意得,直线过点,可设,与抛物线联立,写出韦达定理,再根据圆的性质得出,代数化简求出,即可得出抛物线的方程;

2)因为圆的直径为,且过点,由圆的性质得出,结合(1)中的韦达定理,代数化简求得的值,因此得出直线的方程和圆的方程.

1)设

联立方程有

又以线段为直径的圆,圆心为,且过坐标原点

,有,即抛物线的方程为.

2)由(1)可得

由圆过点,可得

故(1)可得,可得

解得或者

时,

时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,分别为棱的中点

1)求证:

2)求直线所成的角

3)若为线段的中点,在平面内的射影为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为P上一动点,Q的轨迹为.

1)求曲线的极坐标方程,并化为直角坐标方程,

2)若点,直线l的参数方程为t为参数),直线l与曲线的交点为AB,当取最小值时,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记棱长为1的正方体,以各个面的中心为顶点的正八面体为,以各面的中心为顶点的正方体为,以各个面的中心为顶点的正八面体为,……,以此类推得一系列的多面体,设的棱长为,则数列的各项和为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且在y轴上截得的弦MN的长为8

1)求动圆圆心的轨迹C的方程;

2)已知点,长为的线段PQ的两端点在轨迹C上滑动.当轴是的角平分线时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)写出曲线的极坐标方程;

2)在极坐标系中,已知的公共点分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆相交于两点,其中在第一象限,是椭圆上一点.

1)记是椭圆的左右焦点,若直线,当的距离与到直线的距离相等时,求点的横坐标;

2)若点关于轴对称,当的面积最大时,求直线的方程;

3)设直线轴分别交于,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线相互垂直,与曲线C分别相交于AB两点(不同于点O),且的倾斜角为锐角.

(1)求曲线C和射线的极坐标方程;

(2)求△OAB的面积的最小值,并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象在处取得极值4.

1)求函数的单调区间;

2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案